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Consumer-Centric AI 

AI is for 2B/2G，eventually serving 2C.



ML Successes 



What is a Two-sided Marketplace?
A two-sided marketplace is a market where one or more platforms facilitate interactions between two (or 
more) distinct user groups. The platform's goal is to bring both sides “on board” by appropriately structuring 
incentives, such as pricing and accessibility (Rochet –Tirole, 2006). 

Key Characteristics

● Interdependence: The value for one side depends on the presence and engagement of the other.
● Platform as an Intermediary: The marketplace acts as a bridge, reducing transaction costs and 

enhancing trust.
● Pricing Strategies: Platforms use pricing and subsidies to attract and balance supply and demand.

Beyond Pricing

Alvin E. Roth.  Nobel Memorial Prize in Economic,  @ SIGKDD 2018, 08/2018  
“—  In many markets, you care who you are dealing with, and prices don’t do all the work 
  —  (In some matching markets (e.g., organ donations), we don’t even let prices do any of the work...) ”



Examples of Two-sided Marketplace



Ride-sharing is a Complex System



Digital Twins for Marketplaces
Digital Twins for Marketplaces refer to virtual replicas of two-sided marketplaces that simulate and 
analyze real-world interactions between buyers and sellers. These AI-driven models integrate real-time data, 
historical trends, and behavioral analytics to optimize decision-making, improve market efficiency, and test 
policies in a risk-free environment.

Key Modules:

1⃣ Supply-Demand Diagnosis – Identify inefficiencies and bottlenecks.
2⃣ Supply-Demand Prediction – Forecast market trends and user behavior.
3⃣ Policy Optimization – Enhance pricing, matching, and incentives.
4⃣ Policy Evaluation – Measure impact before real-world deployment.
5⃣ Lifetime Value – Maximize long-term user engagement and revenue.

Why It Matters?

✅ Data-driven decision-making
✅ Improved efficiency and user experience

Why It Matters?

✅ Risk-free policy experimentation
✅ Long-term marketplace sustainability



Digital Twins for Marketplaces



Spatio-temporal Causal Digital Twin
Key Components:

❏ Macroscopic Business Indicators – The overall supply-demand balance is influenced by external 
factors and platform policies.

❏ Supply-Demand Matching Degree – Measures how effectively supply meets demand at a given time.
❏ Supply Side  – Availability of providers responding to demand fluctuations.
❏ Demand Side  – Volume of user requests at different times and locations.
❏ Platform Policies (θ₁: Dispatch & Scheduling) 
❏ Platform Policies (θ₂: Pricing & Subsidies) 
❏ External Confounders – Weather, holidays, workdays, infrastructure, and government policies.

Mathematical Framework:

● Future macro indicators depend on supply, demand, and matching degree.
● Matching degree is influenced by real-time supply, demand, dispatch policies, and environmental 

factors.
● Supply levels depend on past demand, matching efficiency, pricing, and subsidies.
● Demand levels are affected by past matching, pricing, subsidies, and environmental conditions.



Supply-Demand Diagnosis

Fan, Z., Luo, S., Qie, X., Ye, J., and  Zhu HT.  Graph-based equilibrium metrics for dynamic supply-demand systems 
with applications to ride-sourcing platforms。 Journal of American Statistical Association, 2021，116, 1688-1699.
Chin, Alex, and Zhiwei Qin. A unified representation framework for rideshare marketplace equilibrium and efficiency. 
Proceedings of the 31st ACM International Conference on Advances in Geographic Information Systems. 2023.



What is Supply-Demand Diagnosis?
Supply-Demand Diagnosis is the process of analyzing and identifying mismatches between supply and 
demand in a given system. It aims to uncover inefficiencies, imbalances, and factors affecting the equilibrium 
between what is available (supply) and what is needed (demand). 

Key Components of Supply-Demand Diagnosis:

1. Data Collection & Analysis – Gathering historical and real-time data on supply and demand trends.
2. Hotspot Detection– Identifying shortages (demand exceeds supply) or surpluses (supply exceeds 

demand).
3. Causal Analysis – Investigating underlying factors such as pricing, external market conditions, policies, 

or operational constraints.
4. Impact Assessment – Evaluating how imbalances affect business performance, customer satisfaction, 

and operational efficiency.
5. Corrective Strategies – Recommending policies, pricing adjustments, or operational changes to restore 

balance. 



Why is Supply-Demand Diagnosis important? 
● Prevents inefficiencies – Helps avoid overproduction, stockouts, or resource wastage.
● Improves decision-making – Enables data-driven adjustments in pricing, inventory, workforce, or infrastructure.
● Enhances market stability – Reduces volatility by ensuring better alignment between supply and demand.
● Boosts profitability – Helps optimize costs and maximize revenues by addressing imbalances effectively.

Example Applications:

● Ride-sharing platforms: Diagnosing supply-demand imbalances in different locations and times 
to adjust dynamic pricing.

● Retail & E-commerce: Identifying stock shortages or excess inventory to optimize restocking 
strategies.

● Healthcare systems: Assessing hospital bed availability against patient needs to optimize 
resource allocation.

● Energy markets: Balancing electricity production with consumption to prevent blackouts or 
inefficiencies.



Graph-based Equilibrium Metric
Motivation

• A metric for measuring supply and demand equilibrium

• Objective function for improving strategies of dispatching, pricing, and 

incentive optimizations

Graph-Based Equilibrium Metrics are a set of measures used to evaluate and 
quantify the balance between supply and demand in complex systems that can be 
represented as graphs (networks). These metrics help assess how well supply 
nodes (e.g., service providers, resources) are matched with demand nodes (e.g., 
customers, tasks) while considering connectivity, constraints, and network effects.
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Graph-based Equilibrium Metric
1. Graph Representation:

○ The system is represented as a bipartite graph (e.g., drivers ↔ riders in ride-sharing) or a general 
graph (e.g., supply chains, logistics, or energy distribution).

○ Nodes represent supply and demand entities at a certain level, while edges represent potential 
interactions or assignments.

2. Matching Efficiency:
○ Measures how effectively supply nodes are connected to demand nodes.
○ Examples: Maximum matching ratio, average matching distance, or latency in matching.

3. Flow Equilibrium:
○ Examines the distribution of supply relative to demand across the network.
○ Example: Wasserstein distance (comparing the distributions of supply and demand over the graph).

4. Hotspot Identification:
○ Identifies overloaded nodes or edges where demand exceeds capacity.
○ Example: Edge congestion score (quantifies imbalance in flow through different pathways).

5. Dynamical Adjustments & Policy Evaluation:
○ Assesses how small interventions (e.g., price changes, routing optimizations) shift equilibrium states.
○ Example: Sensitivity analysis of equilibrium shifts with small perturbations.



Graph Representation

Dynamic Supply Map u(s, t) Dynamic Demand Map v(s, t)

u(s,t)

v(s,t)
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Flow Equilibrium



Graph-based Equilibrium Metrics (GEMs) 



Two-sided View of Marketplace
● Demand-centric view

● Supply-centric view

21

Average rider perception of market 
balance

Average driver perception of market 
balance

If M=N



Spatio-temporal GEMs 



Dynamical Adjustments & Policy Evaluation
Dynamical Adjustments

● Real-Time Incentive Adjustments:
● Reallocation of Resources:
● Hotspot Mitigation:

Policy Evaluation

● Impact Analysis of Pricing Policies:
● Fairness & Accessibility Assessment:
● Longitudinal Performance Tracking:

○ Tracks policy effectiveness over time 
using dynamic equilibrium graphs.

○ Provides adaptive policy 
recommendations based on 
equilibrium shifts.



Five Key Components of the SDD System
     A. Supply-Demand Estimation

     B. Prediction Models for Supply-Demand Forecasting 

     C. Spatiotemporal Value Calculation

● Graph-Based Equilibrium Metric (GEM) Analysis:
● Reinforcement Learning:

     D. Clustering and Demand Hotspot Identification

     E. Intelligent Incentive & Pricing Mechanism

                  (Small-Sized)       (Medium-Sized)     (Large-Scale)                  
Hotspots



Supply-Demand Prediction

Geng et al., Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting. AAAI 2019. 
Yang, R., Dai, R., Tang, X., Zhou, F., and Zhu, H.T. Spatio-temporal prediction of fine-grained origin-destination 
matrices with applications in ridesharing. In revision. 
Wang, S., Luo, S.C., and Zhu, H.T. Causal probabilistic spatio-temporal fusion transformers in two-sided 
ride-hailing markets. ACM Transactions on Spatial Algorithms and Systems, 2024, 10, 1 - 18. 



Why Is Supply-Demand Forecasting Important?
Supply-Demand Forecasting is crucial across various industries as it helps organizations optimize resources, 
reduce inefficiencies, and improve decision-making.  

1. Optimized Resource Allocation

2. Enhanced Customer Experience

3. Cost Reduction and Operational Efficiency

4. Data-Driven Decision Making

5. Facilitates Dynamic Pricing & Revenue Optimization

6. Reduces Risks & Enhances Stability

7. Supports Sustainability & Environmental Efficiency

Industries Where Supply-Demand 
Forecasting Is Critical

● E-commerce & Retail: Managing inventory and 
customer demand.

● Transportation & Logistics: Predicting 
passenger demand and vehicle availability.

● Healthcare: Ensuring medical supply availability 
and hospital capacity management.

● Energy Sector: Balancing power generation 
with consumption needs.

● Manufacturing: Optimizing production 
schedules and raw material sourcing.



Supply-Demand Prediction in Ride-sharing
The Problem The Goal

Predicting the demand-supply distribution

• Multi-modal data fusion

• Complex spatio-temporal patterns 

Model

• Heterogeneous space among cities

• Heterogeneous feature among tasks

Transfer

• Causal inference

• Model interpretation

• Impact analysis

Recognition

Improve the service quality

• Reduce empty driving

Drivers

• Intelligent travel guidance

• Less queueing time

Riders

• Fill demand-supply gap

• Recognize the market

• Better dispatching and scheduling

Platform



Key Challenges in Supply-Demand Forecasting
Supply-demand forecasting is highly complex due to the interplay of platform policies, environmental factors, 
economic conditions, social and policy-driven influences, and infrastructure. Moreover, supply is primarily 
driven by demand, requiring adaptive forecasting models that consider dynamic and uncertain real-world conditions. 

1. Policy & Platform-Driven Challenges
a) Platform Policies
b) Regulation & Compliance Constraints

2. Infrastructure Constraints
a) Transportation & Logistics Bottlenecks
b) Energy & Resource Limitations
c) Digital Infrastructure Gaps

3. Environmental & Random Event Factors
a) Climate Change & Natural Disasters
b) Pandemics & Health Crises.
c) Geopolitical Risks & Global Conflicts

4. Economic & Market Dynamics
a) Inflation & Currency Fluctuations
b) Changing Consumer Behavior & Demand Elasticity
c) Bullwhip Effect in Supply Chains

5. Data & Model Uncertainty in Forecasting
a) Confounding Factors in Predictive Models
b) Data Scarcity & Inaccuracy
c) Feedback Loops & Non-Stationarity

6. Linking Supply & Demand: The Core Challenge
● Infrastructure-Aware Forecasting  
● Real-Time Demand Sensing  
● Dynamic Supply Adjustments 
● Policy-Aware Equilibrium Models



Hierarchical supply-demand forecasting System
A hierarchical supply-demand forecasting system is a structured, multi-level approach that 
models macroscopic business indicators while simultaneously predicting the joint 
distribution of supply and demand. This system integrates platform policies, economic 
factors, environmental influences, social trends, and infrastructure constraints to provide 
adaptive, dynamic forecasting in uncertain real-world conditions.

A. Macroscopic Level (Business Indicator Prediction) 
● Objective: Understand how market equilibrium metric, demand elasticity metrics, and 

infrastructure utilization index influence key business metrics. 

B. Meso Level (Supply-Demand Matching & Policy Integration)
● Objective: Understand how policies, infrastructure, and economic conditions affect 

supply-demand matching.

C. Micro Level (Real-Time Adaptive Forecasting)
● Objective: Predict local supply-demand fluctuations in dynamic environments.



Micro Level Supply-Demand Forecasting

 Spatiotemporal Multi-Graph Convolution Network for Ride-Hailing Demand Forecasting

Goal: Predict ride-hailing demand at the region level using historical data
Algorithm 1: Spatiotemporal Multi-Graph Convolution Network (ST-MGCN)
Authors: Geng et al., 
Proceeding: AAAI 2019

Spatio-temporal Prediction of Fine-Grained Origin-Destination Matrices with Applications 
in Ridesharing

Goal: Accurate OD demand prediction to enhance ridesharing efficiency
Algorithm 2: The Coarseing-Encoder-Decoder network for fine-grained Origin-Destination data (OD-CED)
Authors: Yang et al., 
Journal: In revision for Journal of Computational and Graphical Statistics
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Algorithm 1: ST-MGCN



Experiment



Algorithm 2: OD-CED
Challenges:

1. Scalability – OD matrices grow 
exponentially with more spatial divisions.

2. Data Sparsity – Over 90% of fine-grained 
OD flows have zero demand.

3. Semantic & Geographical Dependencies – 
Travel demand is influenced by both 
regional function (e.g., residential vs. 
commercial) and spatial proximity.



Algorithm 2: OD-CED
OD-CED Model: A Novel OD Prediction Framework

● Space Coarsening Module: Merges 
fine-grained cells into super-cells to mitigate 
sparsity.

● Encoder-Decoder Architecture: Captures 
semantic and geographical dependencies 
effectively.

● Permutation-Invariant OD Embedding: Learns 
robust representations of OD flows.



Experiment
Dataset Performance Comparison (City-C & City-S):

● City-C:
○ RMSE reduced from 1.255 (GEML) → 0.905 (OD-CED) 

(~28% improvement).
○ wMAPE reduced from 0.667 (GEML) → 0.411 (OD-CED) 

(~39% improvement).
● City-S:

○ RMSE reduced from 1.146 (GEML) → 0.740 (OD-CED) 
(~35% improvement).

○ wMAPE reduced from 0.605 (GEML) → 0.323 (OD-CED) 
(~47% improvement).

Training Time Comparison (per epoch on V100 GPU):

● OD-CED: 22.12s
● STGCN: 28.81s
● GEML (state-of-the-art): 39.63s
● CSTN & MRSTN: 1200+ seconds
● OD-CED is 2x faster than GEML and over 50x 

faster than CNN-based methods.



Meso Level Supply-Demand Forecasting 

Causal Probabilistic Spatio-Temporal Fusion Transformers in Two-Sided Ride-Hailing Markets

Goal: Predicting supply and demand in ride-hailing platforms using a causal, interpretable, and 
scalable forecasting framework
Algorithm 3:, A collaborative causal spatio-temporal fusion transformer (CausalTrans).
Authors: Wang et al., 
Journal: ACM Transactions on Spatial Algorithms and Systems, 2024



Algorithm 3: CausalTrans



Algorithm 3: CausalTrans 



Causal Attention Mechanism
We transfer the weights of external covariates to  causal weights by HTE methods (e.g. double machine 
learning).

step 1: external covariates: weather, holidays and subsidy;

step 2: build various of control groups and treat groups;

step 3: do DML and get causal attention or weights.

(a) causal attention algorithm (b) how to work in ConvTrans

step 1: offline training causal attention;

step 2: add above weights in multi-head 
attention



Causal Attention Visualization

•“AA group 1” and “AA group 2” are regarded as comparable contexts;

•“AB group 1” and “AB group 2” is control group and treatment group;

•Do DML and get causal attention weights.



Experiment
(a) Risk_(50%) losses on the retail and ride-hailing datasets.

(b) Risk_(90%) losses on the retail and ride-hailing datasets.

•Use grid search to optimize hyperparameters;

•DeepAR outperforms Seq2Seq and MQRNN 

because of Poisson and weather covariates;

•CausalTrans outperforms other methods 

primarily due to causal estimator DML;

•CausalTrans achieves lower losses on supply 

than demand based on both causal 

relationship;

•Long-term prediction focuses on unbiased 

distribution estimation.



Policy Optimization

Tony Qin

foreva.ai (Ex Lyft, DiDi)



Overview
Core Problems

Online 
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Rebalancing (supply 
repositioning)

Search & 
recommendation Dynamic pricing

Growth & incentives



Overview
Heterogeneity

• Ridesharing, vacation rental, retail, jobs, food delivery, consulting works, …
• Core problems in each domain have important unique characteristics.
• Primary focus on ridesharing, but briefly covering other select domains whenever appropriate

Challenges

• Multi-agent, multi-task coordination
• Real-time decision-making
• Fairness



Reinforcement Learning Primer
topic

• text

topic

• text

topic

• tect



Reinforcement Learning Primer
topic

• text

topic

• text

topic

• tect



Reinforcement Learning Primer
Value-based methods

• TD-learning (V function, on-policy), Q-learning (Q function, off-policy)
• DQN (deep Q-networks)

Policy-based methods

• Policy gradient, advantage (Q-V)
• REINFORCE
• Actor-critic (AC), SAC
• PPO

Model-based methods

• Maintains a learning model of the environment, i.e., P and R.



Transactions in a Marketplace
Pairing of supply and demand

• Centralized decision: ridesharing, food delivery
• Search and select: AirBnb, LinkedIn
• Rebalancing: specific to spatiotemporal operations

Pricing

• Centralized: set by platform
• Decentralized

‒ set by supplies (or service providers): Airbnb, Amazon
‒ set via bidding: Angi
‒ set by both (buyers set budget, service providers send bids): UpWork

• No price involved: LinkedIn (but platform charges subscription)

Growth & Incentives

• Maintain both supply and demand populations

Need illustration here



Ridesharing System Architecture

Qin, et al., 2024. Reinforcement Learning in the Ridesharing Marketplace. 
Synthesis Lectures on Learning, Networks, and Algorithms, Springer.



Online Matching



Online Matching | Driver-centric
MDP (Markov Decision Process)

• Modeled around a driver: (location, time, supply-demand context)

Training

• Offline batch learning: TD learning

s0 s1

s2

T0 T1 T2

[Sutton textbook]

[Xu, et al., 2018; Wang, Qin, Tang, et al., 2018; 
Qin, et al., 2020]

https://mitpress.mit.edu/books/reinforcement-learning-second-edition


 Batch RL for Online Matching

s0 s1

s2

T0 T1 T2

Temporal-difference Learning
[Xu, et al., 2018; Wang, Qin, Tang, et al., 2018; 
Qin, et al., 2020]



Trend

2022
[Eshkevari, et al., 2022]
RLW: online value iteration 
with practical techniques

[Han, et al., 2022] OSV: 
online value iteration with 
linear approximation

2019  INFORMS Daniel H. 
Wagner Prize
[Tang, et al., 2019], [Qin, et al., 2020]
CVNet: Offline deep value network, 
spatiotemporal embedding

2021
[Tang, et al., 2021]
V1D3: on-policy and offline 
ensemble, for joint dispatch 
and repositioning

2020 KDD Cup
RL Track: Learning to Dispatch 
and Reposition on a Ridesharing 
Platform.

2018
[Xu, et al., 2018]
Offline tabular TD(0)
[Wang, Qin, Tang, et al., 
2018]
Single-agent DQN

2023 INFORMS Franz 
Edelman Finalist Award
[Azagirre, et al., 2023] A better 
match for everyone: 
Reinforcement Learning at Lyft 

Offline/batch RL Online RL



Online value iteration
• Learning driver values online

• Generate real-time matching 

decisions

Online RL @Lyft

First full-scale 

industry deployment 

of an online RL 

method

Trip fares,
Idleness

Online supply 
values

Real-time 
matching 
decisions

Learning the driver values 
online and on-policy

A better match for everyone: Reinforcement Learning at 
Lyft. Xabi Azagirre, Akshay Balwally, Guillaume Candelli, 
Nicholas Chamandy, Benjamin Han, Alona King, Hyungjun 
Lee, Martin Loncaric, Sebastien Martin, Vijay Narasiman, 
Zhiwei (Tony) Qin, Baptiste Richard, Sara Smoot, Sean 
Taylor, Garrett van Ryzin, Di Wu, Fei Yu, Alex Zamoshchin. 
INFORMS Journal on Applied Analytics. 2023.



Online Matching | Online RL
How does online RL differ from batch RL in practice?

• Algorithm: needs to handle more uncertainty since trips may not have fully 
completed

• Engineering: high performance system to meet the high throughput 
requirement of a large-scale rideshare platform

Algorithmic techniques

• Expectation-based value updates
• Reward smoothing
• Assignment graph edge standardization
• Real-time adaptive graph pruning
• ADAM for value updates

‒ RMSProp: adapt to the variance, magnitude, and frequency of updates
• Linear factorization and sparse coding for value approximation

‒ Geo and time features

DiDi [Eshkevari et al., 2022]

Lyft [Han et al., 2022]



Online Matching | System-centric
Global state context

• Supply and demand over all grid cells
• Other relevant information: waiting time, intents

Action space

• Combinatorial by nature
• Remedy: serialize the assignments



Online Matching | System-centric
State space

• Current time
• Vehicles status: # vehicles with destination d and particular 

remaining ETA
• Rides status: # riders requesting rides from o to d

Action space

• Match a driver to a request, reposition a driver, idle (“do 
nothing”)

Reward

Sequential decision-making process

• System action at t, a_t
• Decompose into a sequence of atomic actions, 

each addressing a single available vehicle
• Atomic action, a_ti = feasible “trip” (o_ti, d_ti)
• After all available vehicles have been covered, 

system state s_t -> s_t+1 (random request arrivals, 
time advance, idle drivers)

Learning

• PPO objective
• MC rollout for advantage estimation

[Feng et al., 2021]



Online Matching | Multi-agent RL



Online Matching | ADP
Approximate DP



Approximate DP
● References: [Simao, et al., 2009] and [Al Kanj, et al., 2020]

● Bellman equation for the optimal policy X*

● Post-decision state

St                             St
X                       St+1

xt Dt

https://castlelab.princeton.edu/html/Papers/Simao_et_al_SchneiderNational.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0377221720300540


Dual-based Forward-looking Value Functions
● Marginal values as decomposition of the system-level forward-looking value

● Algorithm for steps 1 to T within the n-th episode of dispatch 

Solve step-t matching problem.

represents the marginal cumulative value of a driver in a’ from time t’ over a future horizon.

Update value function at (t,a) 
using supply dual variables ut,a 
via TD-like model-free updates.



Online Matching | Decentralized
Decentralized mechanism

• Demand broadcasting
‒ Platform broadcasts the demand to multiple service providers. 
‒ Service providers bid for the request: by price or by acceptance speed.

Applications

• Some ridesharing platforms (mostly in the early years of this vertical)
• Handyman or consulting projects: Angi, Upwork

Variations

• See “search & recommendations” and “pricing”

market
place

demand

“quote”

feasible set of sellers

match & 
price



Online Matching | Demand Broadcasting
Ridesharing case study

• Zhang et al. A Taxi Order Dispatch Model Based on Combinatorial Optimization (KDD 2017)

Motivations

• Nearest-driver matching: ignores global optimization
• Global Success Rate: Maximizing completed rides, not just immediate matches.
• User Experience: Reducing wait times (dispatch time) and cancellations.

Technical highlights

• Driver Acceptance Prediction: Logistic Regression (LR) model estimates acceptance 
probabilities.

• Order Dispatch as a Constrained Optimization Problem:
‒ Orders are assigned to multiple drivers.
‒ The first driver to accept wins the order.
‒ Hill-Climbing Algorithm optimizes the global success rate.



Rebalancing (Supply Repositioning)
Motivation

• To proactively relocate idle vehicles to improve individual or system-level 
income performance 

Driver perspective

• Virtual “ride” with platform guidance
• Usually not a long trip: driver acceptance

System perspective

• Intervention of supply distribution
over a grid system

[Jiao et al., 2021]

[Wei et al., 2023]



Rebalancing (Supply Repositioning)
Driver-centric formulation

• Each vehicle executes repositioning 
independently.

State space

• Can share with the dispatch/matching case

Action space

• Neighboring cells in a grid-cell system

Tang, X., Zhang, F., Qin, Z., Wang, Y., Shi, D., Song, B., Tong, Y., Zhu, H. and Ye, J., 2021, 
August. Value Function is All You Need: A Unified Learning Framework for Ride Hailing 
Platforms. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & 
Data Mining (pp. 3605-3615).



Rebalancing (Supply Repositioning) | Taxi 
Routing

Jiao, Y., Tang, X., Qin, Z.T., Li, S., Zhang, F., Zhu, H. and Ye, J., 2021. Real-world 
ride-hailing vehicle repositioning using deep reinforcement learning. 
Transportation Research Part C: Emerging Technologies, 130, p.103289.



Rebalancing (Supply Repositioning)
Interpretation

• Tree search = computing and 
comparing expected path values

Other approaches

• Coordination through independent 
learning + global contextual info
[Lin et al., 2018], [Oda & Joe-Wong, 
2018], [Zhang et al., 2020]

• Bi-level MARL: [Shou & Di, 2020]
Black solid: reposition
Red dotted: dispatch
Black dotted: dispatch or reposition

[Jiao et al., 2021]



Rebalancing (Supply Repositioning)
System-centric formulation

• Determines repositioning actions for all vehicles: joint actions

Modeling

• Global state information
• Aggregate level actions: e.g., number of idle vehicles to reposition from cell i to cell j at time t

‒ Problem size independent from number of vehicles

Goal

• Influence future supply distribution to match better with demand so as to maximize total income and aggregate 
utilization 

RL works

• [Feng et al., 2021] PPO
• [Mao et al., 2020] Batch AC: outputs a distribution of vehicles to allocate to each neighboring destinations



Rebalancing (Supply Repositioning) | MPC
Model-predictive control

• Uses short-term demand forecasting to plan future actions
• Usually ignores (and is impractical to consider) long-term effects 

due to computational complexity

LP formulation with lookahead

• LP based on fluid model for Short-Term Optimization
‒ Models repositioning rate (only a fraction of drivers comply).
‒ Relaxes flow constraints to account for system 

nonstationarity.
• Reinforcement Learning for Long-Term Rewards

‒ Uses value function approximation to capture future 
demand-supply effects.

‒ Trained using historical driver trajectories with TD learning.
• Real-Time Prediction & Optimization

‒ LSTM-CNN based arrival rate prediction.
‒ Online updates to optimize fleet movement over multiple 

time steps (T-step lookahead).

Wei, H., Yang, Z., Liu, X., Qin, Z., Tang, X. and Ying, L., 2023. A 
reinforcement learning and prediction-based lookahead policy for vehicle 
repositioning in online ride-hailing systems. IEEE Transactions on Intelligent 
Transportation Systems, 25(2), pp.1846-1856.



Search & Recommendation
Overview

• Generalized form of online matching
• Works specifically for decentralized transaction-making

‒ In a centralized system (e.g., ridesharing), search collapses into online matching.
• Presents relevant supply options to demand
• Presents relevant requests (demand) to service providers (supply)

Domain-specific problems

• Retail: personalized product ranking (from different vendors)
• Vacation rental: property visibility optimization
• Food delivery: restaurant discovery

Difference from online matching

• Presents multiple service providers to the requester/buyer. The buyer makes the final selection.
• In online matching, the system presents the single option to the buyer.



Search & Recommendation
Objective

• To best meet the buyer’s needs so that a transaction is most likely to occur

Trade-off considerations

• Prices associated with the recommendations in the search results
‒ Too high: demand lost
‒ Too low: platform loses on revenue

• Relevance of the search results to the buyer’s demand
‒ Jobs: matching roles from hiring teams
‒ Rental: location and features of the properties
‒ Retail: item features
‒ Food delivery: food items that the store offers

• User experience
‒ Customer desires quick and relevant match

There’s a symmetric problem for 
recommendations to sellers/freelancers.



Search & Recommendation | Case Studies
Meituan's Takeout Recommendation System

• Zhang et al. Modeling Dual Period-Varying Preferences for 
Takeaway Recommendation (KDD 2023)

Key challenges

• Dual interaction-aware preferences
• Time-varying preferences

Technical highlights

• Dual interaction-aware module
• Time-based decomposition module
• User-/time-aware gating mechanism



Search & Recommendation | Case Studies
Embeddings for improving search relevance at Instacart

• Instacart Transformer-based Embedding Model for Search (ITEMS)
• Deep learning model for unified representations of search queries 

and products, improving search relevance, especially for 
ambiguous or long-tail queries

Model architecture

• Two-Tower Transformer Structure
• Semantic Similarity Assessment

Training & implementation

• Fine-tuned using Instacart's search impression logs, learning from 
both positive and negative query-product pairs.

• Complements keyword-based and category-based retrieval 
methods, particularly effective for complex or less common queries.

https://www.instacart.com/company/how-its-made
/how-instacart-uses-embeddings-to-improve-sear
ch-relevance/

https://www.instacart.com/company/how-its-made/how-instacart-uses-embeddings-to-improve-search-relevance/
https://www.instacart.com/company/how-its-made/how-instacart-uses-embeddings-to-improve-search-relevance/
https://www.instacart.com/company/how-its-made/how-instacart-uses-embeddings-to-improve-search-relevance/


Search & Recommendation | Fairness
Two-sided fairness

• Patro et al., 2020. FairRec: Two-Sided Fairness for Personalized Recommendations in Two-Sided Platforms (WWW 
2020) 

• Focus on maximizing customer satisfaction often leads to unfair exposure distribution for producers (e.g., 
sellers, restaurants, content creators).

• Over-exposure to popular producers & under-exposure to less popular ones → negatively impacts marketplace 
sustainability.

• A producer-centric design may harm customer experience, creating a trade-off.

Fair allocation

• Maximin Share (MMS): Guarantees a minimum level of exposure for producers.
• Envy-Free up to One Item (EF1): Ensures customers don’t feel significantly disadvantaged.

Algorithm

• Step 1: Assigns products ensuring fair exposure among producers.
• Step 2: Allocates recommendations in a way that minimizes customer envy.

Sühr, T., Biega, A.J., Zehlike, M., Gummadi, K.P. and Chakraborty, A., 2019, July. Two-sided fairness for 
repeated matchings in two-sided markets: A case study of a ride-hailing platform. In Proceedings of the 25th 
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 3082-3092).

Also see:



Search & Recommendation | Case Studies
Fairness in LinkedIn’s Recommendation Algorithms

• Yu & Saint-Jacques. Choosing an Algorithmic Fairness Metric for an Online Marketplace: Detecting 
and quantifying algorithmic bias on LinkedIn 

Why fairness in marketplace recommendations?

• Algorithms influence who gets recommended job opportunities, connections, or services.
• Biased recommendations can reduce opportunities for underrepresented groups.
• Need for a precise fairness metric that separates algorithmic bias from human bias.

Technical highlights

• Fairness test based on marginal candidate outcomes
• Fairness metric for marketplace recommendations:  equal opportunity for equally qualified 

candidates
• Separating algorithmic bias from human bias



Dynamic Pricing
Centralized

• Platform sets the price for each request
• Platform also sets the corresponding pay for the supply
• Typical for ridesharing platforms

Decentralized 

• Seller/service provider sets the price for the item/service offered. Platform provides pricing 
guidance.

• Service provider bids for a specific demand/request, typically in a demand broadcasting matching 
mechanism.

• Buyer (service requester) sets the pay for a request. Service provider decides whether to take on a 
request.

• Typical for vacation rental, retail, and consulting projects



Dynamic Pricing | Centralized (Ridesharing)
Spatiotemporal pricing

• Chen, et al., 2021. Spatial-temporal pricing for ride-sourcing platform with 
reinforcement learning. Transportation Research Part C: Emerging Technologies,.

• Pricing decision for each hexagonal cell: (per-km rate for excess mileage 
beyond a base trip distance, per-km rate for driver wage)

• Objective: maximizing total profits

Agent

• Global decision-maker
• State info: the numbers of open requests, vacant vehicles, occupied vehicles 

in each grid cell at time t and historical demand at time t -1
• Different rider and driver elasticity functions as part of the env

Learning

• PPO



Dynamic Pricing | Centralized (Ridesharing)
Joint pricing with online matching

• Dynamic price adjustments through % movement on base price
• Goal: maximize long-term cumulative returns

Macro-lever interaction

• Price changes affect demand distribution, which in turn has impact 
on dispatch outcomes, even with the same driver group and 
matching policy.

Dynamic pricing decisions

• Contextual bandits on a set of discrete price % adjustments

Long-term value 

• Conversion probability * trip value computed from TD errors based 
on supply values

Intents

Chen, H., Jiao, Y., Qin, Z., Tang, X., Li, H., An, B., Zhu, H. and 
Ye, J., 2019, November. InBEDE: Integrating contextual bandit 
with TD learning for joint pricing and dispatch of ride-hailing 
platforms. In 2019 IEEE International Conference on Data 
Mining (ICDM) (pp. 61-70). IEEE.



Dynamic Pricing | Decentralized (1)
Platforms provides pricing guidance

• Airbnb, Amazon, UpWork
• Service providers (sellers) have “preset” services and set their own price or hourly rate
• Platform guidance helps both sellers and platform.



Dynamic Pricing | Decentralized (1)
Key difference from ridesharing

• Real-timeness

Time sensitivity

• Pricing adjustments are more gradual, considering longer-term factors such as upcoming events or seasonal trends.
• Ridesharing: Pricing is highly sensitive to real-time conditions

Supply elasticity

• The supply of available properties is relatively fixed in the short term.
• Ridesharing: Driver availability can change quickly in response to surge pricing.

Customer decision-making

• Guests typically plan their stays in advance
• Ridesharing: Consumers often make spontaneous decisions, with price playing a critical role in immediate choice.



Dynamic Pricing | Decentralized (2)
Service providers / sellers bid for a demand / request

• Rideshare in early days
• Contractual projects. Angi, UpWork (project-based fixed price)
• Similar to the previous setting but with on-demand request-specific pricing

Customer publishes 
a project / ride.

Interested sellers bid 
with quotes/ETA for 
the project/ride.

Customer selects one 
seller to complete the 
deal.



Dynamic Pricing | Decentralized (3)
Buyer sets the pay for a request

• Some rideshare platforms adopt this mechanism - perceivably more fair.
‒ Riders set their own price for a ride.
‒ Drivers can accept, decline, or counteroffer with their own bid.
‒ Riders then choose the driver based on price, rating, and estimated arrival time.

• Freelancing (UpWork): clients can set their budgets, and freelancers submit their proposals to 
specific projects.



Growth & Incentives
Significance

• The value of the platform for either side (supply/seller, demand/buyers) depends on the availability 
of the other side.

• The size of both user groups have to be in “balance” for the marketplace to be efficient.

Target populations

• Buyers (demand-side): discounts on price
• Sellers (supply-side): bonus in pay
• Other non-monetary incentives: priority in matching or recommendations

When to distribute

• Real-time: triggered by real-time events (e.g., demand intents, cancellation)
• Batch: decisions are more about the precise target group, often for life-cycle management on the 

platform



Growth & Incentives | Supply-side
Real-time incentives

• More often seen on ridesharing or food delivery platforms
• Vehicle repositioning

Batch incentives

• Ridesharing: target-based driver incentives (ride streaks)
• Food delivery: "Complete 20 deliveries in a week and earn a $100 bonus."
• Earning guarantees for new participants
• Seasonal listing promotions in vacation rentals

Optimization

• Decisions: incentive structure and amount, target group, triggering time
• Learning algorithm for optimizing policy
• Causal inference for estimating uplift effects



Growth & Incentives | Supply-side
Target-based incentives for drivers (ride streaks)

• Complete X rides today to get $Y in bonus.
• Can be tiered: complete X+5 rides today to get an additional $Z in bonus
• Typically targeted in a batch, planned manner: e.g., distribute today, take effect tomorrow

Goal

• To incentivize drivers to stay longer with the platform -> more driver hours -> more supply

Problems / considerations

• Cost: bonus amount, probability of getting the bonus (hitting the target)
• Returns: uplift in driver hours on the same day, and longer-term effects

‒ Long-term effects can be negative: driver keeps getting targets that are too hard to hit
• RL on incentive policies: [Shang, et al., 2019]
• Causal inference on uplift effects: [Huang, et al., 2022, Shang, et al., 2021]
• Effects on supply behavior: [Liu, et al., 2023a, Liu, et al., 2023b] 



Growth & Incentives | Demand-side
Real-time incentives

• Intent-based discounts
• Cancellation-triggered discounts
• Bundling upon check-out

Batch incentives

• Customer life-cycle management
‒ First-purchase discounts
‒ Tiered loyalty program

• Streak-based rewards



Growth & Incentives | Demand-side
Intent-based discounts (ridesharing)

• Ride intent: the action of viewing a quote for a particular ODT 
(origin-destination-time) combination. Not an actual order yet but a strong 
signal of potential demand.

• Typically ODT -specific and real-time

Purpose 

• To shape demand (spatiotemporal) distribution to align better with future supply 
distribution to maximize long-term (daily) returns

Problems / approaches

• Estimating trip value: marginal demand value via supply values (TD errors)
• Estimating uplift in probability of order conversion: causal inference

s1

s2

[Wiu et al., 2022]
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A/B Testing Pipeline



A/B Testing (Cont’d)



Examples of Target Policies in Ridesharing



Example: Order Dispatching

• Online experiments typically last for two weeks
• 30 minutes/1 hour as one time unit, randomized over time 
• Data forms a time series 
• Observations: 

‒ Outcome: drivers’ income or no. of completed orders
‒ Demand: no. of call orders
‒ Supply: no. of idle drivers 

• Treatment (binary): 
‒ New order dispatching policy B
‒ Old order dispatching policy A

• Target: Average treatment effect (ATE) = difference in average outcome between the new and old policy 



Example: Subsidizing

• Randomized over population (e.g., passengers)
• Panel data: containing data from multiple individuals, each forms a time series 
• Observations: 

‒ Individual-level outcome: passenger satisfaction
‒ Individual-level covariate: passenger’s demographics and historical service usage data
‒ City-level demand: no. of call orders
‒ City-level supply: no. of idle drivers 

• Treatment (binary): 
‒ New order subsidizing policy B
‒ Old order subsidizing policy A

• Target: Average treatment effect (ATE) = difference in average outcome between the new and old policy 



Overview
Challenges in A/B testing

• Interference effects over time/space
• Partial observability
• Early termination
• Small sample size
• Weak signal
• Solutions to these challenges

Design of online experiments

• Designs and trade-offs
• A selective review of optimal designs
• Case study in ridesharing

Policy Evaluation

• Direct method
• Importance sampling
• Double robust method
• Model-based method
• Uncertainty quantification 
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Challenge I: Interference Effects 
Time series experiments: Carryover (delayed) effects over time

• Past treatments influence future observations/outcomes (Li, et al., 2024a, Figure 2) 
• Under the alternating-time or switchback design

   

many conventional A/B testing/causal inference methods would fail (Shi et al., 2023a) 

Multi-unit experiments: Spillover effects across units

• Each unit’s outcome/observation depends on both its own treatment and treatments from other units



Challenge I: Carryover Effects over Time



Adopting the Closest Driver Policy



Some Time Later …



Miss One Order



Consider a Different Policy



Able to Match All Orders



Challenge I: Carryover Effects over Time (Cont’d)



Challenge I: Spillover Effects over Space

policy in one location drivers from neighbouring location
outcomes in neighbouring location



Challenge II: Partial Observability



Challenge II: Partial Observability



Other Challenges
Challenge III: The need for early termination

• Each experiment takes a considerable time
• Early termination to save time and budget

Challenge IV: Small sample size

• Online experiments last at most 2 weeks (Xu et al., 2018)
• Increasing the variability of the treatment effect estimator

Challenge V: Weak signal

• Size of treatment effects ranges from 0.5% – 2% (Tang et al., 2019)
• Making it challenging to distinguish between new and old policies



Addressing Carryover Effects over Time
RL framework for A/B testing 

• Employ Markov decision processes (MDPs) to model experimental data (Glynn et al., 2020, Farias et al., 2022, Shi et al., 2023a)  
• Capture carryover effects over time using dynamic system transitions

• Past policies impact future outcomes indirectly through future states
• Future states serve as mediators between past policies and future outcomes



Addressing Carryover Effects (Cont'd)
RL framework for A/B testing 

• Most existing solutions require the independence assumption (see e.g., Larsen et al., 2024; Quin et al., 2024)

failing to detect any carryover effect (see the numerical examples in Shi et al., 2023a). 



Addressing Spillover Effects, Partial Observability
& Early Stopping
(MA)RL framework for A/B testing 

• Employ multi-agent models to capture spillover effects across units by the interactions among agents (Shi et al., 2023b)  
• Employ partially observable MDPs (POMDPs) to capture partial observability (Liang and Recht, 2023; Sun et al., 2024) 

Sequential monitoring

• Avoid p-value peeking
• Employ sequential analysis (e.g., alpha-spending) for A/B testing (Jennison et al., 2000) 



Addressing Small Samples & Weak Signals
Design of experiments

• Identify optimal treatment allocation strategy in online experiments that minimizes MSE of the ATE estimator

Data integration

• Combine experimental data (A/B) with historical data (A/A) to improve ATE estimation (Li et al., 2023b, 2024b)
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Off-policy Evaluation (OPE)

Objective: Evaluate the impact of a target policy using 
historical data generated from a different behavior policy 

We will cover three settings

Settings carryover effects spillover effects

Contextual bandits

RL

MARL



OPE in Contextual Bandits

• A widely-used model in medicine and technological industries 
• At each time t, the agent

‒ Observes a context
‒ Select an action (old policy A or new policy B)
‒ Receives an outcome

• Objective: Given a sequence of i.i.d. context-action-outcome triplets generated by a behavior policy, 

b(A|context) = Pr(action=A|context) = 1 - Pr(action=B|context) = 1 - b(B|context)

we aim to estimate the ATE: difference in expected outcome between A and B 
• Common estimators (Dudik et al., 2014) 

‒ Direct estimator
‒ Importance sampling (IS) estimator
‒ Doubly robust (DR) estimator

https://arxiv.org/search/cs?searchtype=author&query=Dudik,+M


Direct Estimator

• Let r denote the outcome regression (or reward) function

r(A, context) = E(outcome|action=A, context), r(B, context) = E(outcome|action=B, context)

• ATE can be represented by 

            E[r(B, context) - r(A, context)]

• The direct estimator: 
‒ Estimates r using supervised learning
‒ Approximates the expectation E using the empirical context distribution
‒ Plugs these estimators into the ATE formula



Importance Sampling Estimator

• The IS estimator 
‒ Estimates the behavior policy b using supervised learning
‒ Reweights each outcome by the IS ratio that adjusts the distribution shift between the target policy and b

ratio(action|A, context) = I(action = A)/b(A|context)
ratio(action|B, context) = I(action = B)/b(B|context)

‒ Averages these reweighted outcomes to estimate the ATE
• Extensions

‒ When b is small for certain action-context pairs, IS suffers from a large variance
‒ Self-normalized IS: normalize all IS ratios prior to reweighting
‒ Truncated IS: truncate b from below prior to constructing IS ratios

• Bias/variance trade-off
‒ Direct estimator suffers from some bias, as the outcome regression function r needs to be estimated from data
‒ IS is unbiased when b is known as in randomized studies, but suffers from a large variance 



Doubly Robust Estimator

• Direct estimator estimates the outcome regression function r to learn ATE
‒ Its consistency requires consistent estimation of r

• IS estimates the behavior policy b to learn ATE
‒ Its consistency requires consistent estimation of b

• Doubly robust estimator estimates both r and b
‒ Its consistency requires consistent estimator of either r or b, but not necessarily both
‒ It constructs the following estimating functions 

[r(B, context) - r(A, context)] + [ratio(action|B, context)- ratio(action|A, context)] (outcome - r(action, context))

‒ The first term = estimating function in the direct estimator
‒ The second term = augmentation term to debias the bias of the direct estimator

‣ Offer additional robustness against misspecification of r
‒ Averages these estimating function over the context-action-outcome triplets to estimate ATE

   



Fact 1: Double Robustness 

• Recall the estimating function

[r(B, context) - r(A, context)] + [ratio(action|B, context)- ratio(action|A, context)] (outcome - r(action, context))

• When r is correctly specified: 
‒ The second augmentation term is of mean zero 
‒ DR ≈ direct estimator, which becomes consistent 

• When b is correctly specified:
‒ The estimating equation has the same expected value to that of IS
‒ DR ≈ IS estimator, which becomes consistent

   



Fact 2: Efficiency 

• Recall the estimating function

[r(B, context) - r(A, context)] + [ratio(action|B, context)- ratio(action|A, context)] (outcome - r(action, context))

• When b is correctly specified: 
‒ The estimating function is unbiased to the oracle ATE
‒ DR’s MSE becomes proportional to the variance of the estimating function 

• Additionally, when r is correctly specified: 
‒ The estimating function achieves the minimal variance
‒ A good working model for r improves DR’s estimation efficiency 
‒ The DR estimator achieves the efficiency bound (e.g., smallest MSE among a wide class of regular estimators, Tsiatis, 2006)

   



Fact 3: Efficiency 

• When b is estimated from data and the model is correctly specified: 

MSE(IS with an estimated b) <= MSE(IS with the oracle b)

• Estimating b yields a more efficient estimator, even if we know the oracle b (Tsiatis, 2006)
• The same holds true in RL settings (Hanna et al., 2019, 2021)

‒ MSE of IS can be reduced through history-dependent IS estimation 
‒ The longer the history-length, the smaller the variance

   



Fact 4: Asymptotic Normality 

• DR converges at a parametric rate (e.g., root-n rate) and remains asymptotically normal even when both the estimated r 
and b converge slower than the parametric rate

‒ More specifically, it only requires both nuisance functions to converge faster than the fourth-root rate 
• This enables us to apply modern deep/machine learning to estimate both r and b, leading to the double machine learning 

(DML) estimator (Chernozhukov et al., 2018)
‒ Cross-fitting can be employed for valid statistical inference (e.g., hypothesis testing, confidence interval construction)

• Extensions of DML to RL: Double reinforcement learning (DRL, Kallus and Uehara, 2022, Liao et al., 2022)

   



OPE in Reinforcement Learning

• Focus on the MDP model (assuming full observability)
• Objective: Given an offline data consisting of a set of state-action-reward-next-state tuples generated by a behavior policy

b(A|state) = Pr(action=A|state) = 1 - Pr(action=B|state) = 1 - b(B|state)

We aim to estimate the ATE: the difference in the expected return between the two policies A and B

return = reward at time 1 + 𝛄 reward at time 2 + … + 𝛄^t reward at time t + … 

where 𝛄 denotes the discount factor (allowed to be 1). 

• Common estimators (see Uehara et al., 2022 for a recent review): 
‒ Direct estimator
‒ IS estimator
‒ DR estimator
‒ Model-based estimator

   



Direct Estimator

• Let V(A, state) and V(B, state) denote value functions (expected return starting from a given state) under the two policies. 
• ATE can be represented by 

            E[V(B, initial state) - V(A, initial state)]

• The direct estimator: 
‒ Estimates V using RL

‣ Fitted value or Q-evaluation (Le et al., 2019)
‣ Least square temporal difference learning (Sutton et al., 2008; Shi et al., 2022)
‣ RKHS-based estimator (Liao et al., 2021)

‒ Approximates the expectation E using the empirical initial state distribution
‒ Plugs these estimators into the ATE formula



Importance Sampling Estimator
Sequential importance sampling (SIS, Zhang et al., 2013; Thomas et al., 2015) 

• Estimates the behavior policy b using supervised learning 
• At each time t, reweights the reward using the product of IS ratios to address the distributional shift from the initial time to t

ratio(action at time 1|state at time 1) ✕ … ✕ ratio(action at time t|state at time t)

• Averages these reweighted rewards to estimate the ATE
• Suffers from curse of horizon (Liu et al., 2018): Variance of the product of ratios grows exponentially fast wrt t
• Extension: doubly robust estimator (Jiang and Li, 2016; Thomas and Brunskill, 2016)

Marginalized importance sampling (MIS, Liu et al., 2018; Xie et al., 2019)

• Employ the structure of MDP (e.g., Markov assumption) to break the curse of horizon
• At each time t, reweights the reward using the marginalized IS ratio of both the state and action at time t

ratio(state at time t, action at time t)

computed via e.g., minimax learning (Uehara et al., 2020), RKHS (Liao et al., 2022)



Double Reinforcement Learning

• Double RL extends double ML (Chernozhukov et al., 2018) from bandits to RL (Kallus and Uehara, 2022; Liao et al., 2022)
• Similar to DR, the estimator can be represented by 

            Direct Estimator + Augmentation Term

• Augmentation term relies on the MIS ratio and is to 
‒ debias the bias of the direct estimator 
‒ offer protection against model misspecification of the Q- or value function

• Fact 1: DRL is doubly robust, e.g., consistent when either the value function or MIS ratio is correctly specified
• Fact 2: DRL achieves the efficiency bound in MDPs when both nuisance functions are correctly specified
• Fact 3: DRL is asymptotically normal when both converge faster than the fourth-root n rate

‒ which facilitates hypothesis testing and calculation of p-values
• Fact 4: In addition to DRL, there exist efficient direct or MIS estimators as well

‒ Direct estimators based on linear function approximation (Shi et al., 2022, 2023a) or RKHS (Liao et al., 2021) 
‒ MIS estimators based on linear function approximation = double RL estimator = direct estimator



Deeply-debiased OPE (Shi et al., 2021)

• Constructed based on high-order influence functions (Robins et al., 2008, 2017) 
• Ensures bias decays to zero much faster than standard deviation to produce valid p-values 
• Allows nuisance functions to converge at arbitrary rates



Model-based Estimator

• Direct, IS and DR are all model-free estimators
• Model-based estimator estimates the MDP model (reward & state transition function) from the data 

            E (reward|action, state) & P (next state|action, state)

and employs dynamic programming (DP), Monte Carlo (MC) method, or temporal difference (TD) learning for
policy evaluation; see Sutton and Barto (2018) for a review of these methods



Uncertainty Quantification: A Selective Review

Model-based Direct method Importance sampling Double robust

Concentration 
inequalities

Feng et al. (2020) Thomas et al. (2015) Thomas et al. (2016)
Jiang and Li (2016)
Zhou et al. (2023)

Normal 
approximation

Luckett et al. (2020)
Liao et al. (2021)
Shi et al. (2022)

Wang et al. (2023) Shi et al. (2021)
Liao et al. (2022)
Kallus and Uehara (2022)

Bootstrap Hanna et al. (2017) Hao et al. (2021) Thomas et al. (2016)
Hanna et al. (2017)

Empirical likelihood Dai et al. (2020)



Extensions
Policy evaluation under weak carryover effects

• Farias et al. (2022) proposed a difference-in-Q (DQ) estimator, a direct estimator under the assumption of weak carryover effect
• When compared against other direct estimators (e.g., Shi et al., 2023a): 

‒ DQ is an on-policy estimator that calculates the difference in Q-estimators under the behavior policy
‒ The direct estimator by Shi et al. (2023a) is off-policy which computes Q-estimators under the target policy
‒ On-policy estimator has smaller variance at the cost of a larger bias whose order of magnitude depends on the size of carryover effect

Policy evaluation in POMDPs 

• Model-based methods based on linear state-space models (Liang and Recht, 2023; Sun et al., 2024) 
• Model-free methods using future-dependent value functions (Uehara et al., 2023)

Policy evaluation in MARLs

• Adapt mean-field approximation designed for policy optimization (Yang et al., 2018) to OPE (Shi et al., 2023b)
• Employ permutation-invariant or graph neural networks to model spillover effects (Leung and Loupos, 2022; Dai et al., 2024)



Overview
Challenges in A/B testing

• Interference effects over time/space
• Partial observability
• Early termination
• Small sample size
• Weak signal
• Solutions to these challenges

Design of online experiments

• Designs and trade-offs
• A selective review of optimal designs
• Case study in ridesharing

Policy Evaluation

• Direct method
• Importance sampling
• Double robust method
• Model-based method
• Uncertainty quantification 



Recap: Order Dispatching

• Online experiments typically last for two weeks
• 30 minutes/1 hour as one time unit, randomized over time 
• Data forms a time series 
• Observations: 

‒ Outcome: drivers’ income or no. of completed orders
‒ Demand: no. of call orders
‒ Supply: no. of idle drivers 

• Treatment (binary): 
‒ New order dispatching policy B
‒ Old order dispatching policy A

• Target: Average treatment effect (ATE) = difference in average outcome between the new and old policy 
• Objective: identify optimal treatment allocation strategy in online experiments that minimizes MSE of the ATE estimator



Alternating Day (AD)



Alternating Time (AT)



AD v.s. AT
Pros of AD

• Within each day, it is on-policy and avoids
distributional shift, as opposed to off-
policy designs (e.g., AT)

• On-policy designs are proven optimal in 
fully observable Markovian environments 
(Li et al., 2023)

Pros of AT

• Widely employed in ridesharing companies 
such as Lyft and Uber (Chamandy, 2016; 
Luo et al., 2024)

• According to my industrial collaborator, AT 
yields less variable ATE estimators than 
AD

Q: Why can off-policy designs, such as AT, be more efficient than AD? 

A: Due to partial observability … 



A Bandit Example

• A bandit setting without carryover effects

outcome = a I(action = A) + b I(action = B) + e

• ATE equals b - a and can be estimated by the sample mean estimator 
‒ average the outcome under the two policies and take the difference

• The resulting estimator’s MSE under AD and AT is proportional to 

which depends on the residual correlation: 
• With uncorrelated residuals, both designs yield same MSEs; 
• With positively correlated residuals:

‒ AD assigns the same treatment within each day, under which ATE estimator’s variance inflates due to accumulation of residuals
‒ AT alternates treatments for adjacent observations, effectively negating these residuals, leading to more efficient estimation 

• With negatively correlated residuals, AD generally outperforms AT 



When Can AT Be More Efficient than AD

Key condition: Residuals are positively correlated

• Often satisfied in practice 

• Rule out full observability (Markovanity) under which residuals are uncorrelated 
• Can only be met under partial observability
• Suggest partial observability is more realistic, aligning with my collaborator’s finding



Designs and Trade-offs 

• Previous analysis excludes carryover effects
• Trade-off between on-policy and off-policy designs (Wen et al., 2024; Xiong et al., 2024)

‒ On-policy designs (e.g., AD or Li et al. 2023) are favored in settings with large carryover effects to avoid distributional shifts 
‒ Off-policy designs (e.g., AT or switchback) are preferred with positively correlated residuals for variance reduction



Generalizations to Multi-unit Experiments

• Global design: Apply same policy to all units at each time and switch policies across time
• Individual design: Apply i.i.d. policies to all units at each time
• Cluster-randomized design: Group units into clusters; apply i.i.d. policies to all clusters at each time 

• Trade-offs among the three designs (Ugander et al., 2013; Leung, 2021; Viviano et al., 2023; Yang et al., 2024)
‒ Global designs are on-policy and are favored in settings with large spillover effects to avoid distributional shifts 
‒ Individual designs are off-policy are preferred with positively correlated residuals across units for variance reduction
‒ Cluster-randomized designs strike a balance among interference and correlation, often yielding the best performance



Optimal Designs in Time Series Experiments

• Proven optimal in Markovian environments
• Doubly robust method: Employ DR for ATE estimation
• On-policy: Similar to AD, it assigns the same policy within each day and switch policies across days
• Neyman-allocation: No. of days assigned to treatment and control proportional to the variance of daily return

MDP Design (Li et al., 2023) – Code available on GitHub 

https://github.com/tingstat/MDP_design


Optimal Designs in Time Series Experiments

• Minimax optimal among the class of regular switchback designs 
• Sequential importance sampling for ATE estimation – potentially suffering from curse of horizon

• Off-policy: Similar to AT, each policy is implemented for a specific duration and then switched to the other
• Randomization frequency: The optimal duration aligns with the order of carryover effect

Switchback Design (Bojinov et al., 2023)



Optimal Designs in Time Series Experiments

• Proven optimal in partially observable environments

• Model-based method: Employ classical ARMA model
‒ Autoregressive model for observations
‒ Moving average model for residuals
‒ Control component to incorporate policies

 → allow carryover effects & partial observability
• Theory: Establish asymptotic MSEs of ATE estimators 

→ compare different designs
• Optimization: Develop an RL algorithm 

→ compute the optimal design

ARMA Design (Sun et al., 2024) – Code on GitHub 

https://github.com/datake/ARMADesign


Case Study: Order Dispatching (Code)
Experiment I: A Synthetic Dispatch Simulator

• Ridesharing environment over 9 ⨉ 9 spatial grid (code)
• New policy: MDP order dispatch policy (Xu et al., 2018) 
• Old policy: distance-based policy

Experiment II: City-level Real-data-based Simulator

• City divided into 85 hexagonal regions (Tang et al., 2019)
• Orders: Generated according to the dataset 
• Drivers: Behavior learned the dataset

https://github.com/datake/ARMADesign
https://github.com/callmespring/MDPOD


Case Study: Order Dispatching (Cont’d)
Experiment III: Real-data-based Analyses

• Data from two different cities • Bootstrap-based simulation
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LLM for Marketplaces

Tony Qin

foreva.ai (Ex Lyft, DiDi)



LLMs in Two-sided Marketplaces
What are LLMs?

• Transformer-based language models trained on vast amounts of text data.
• Capable of understanding and generating human-like text.
• Amplified by advancement in speech recognition and voice synthesis

Why LLMs in marketplaces?

• Enhance user experience through natural language interactions.
• Improve decision-making (e.g., pricing and incentives) by analyzing unstructured data (e.g., 

reviews, chat logs).
• Automate customer support, search/recommendations, and more.



LLM-based Agents
Model

• Similar to RL agents but with natural language as communication vehicle

Examples

• Customer support
• Legal assistant
• Shopping guide
• Sales marketing
• Restaurant phone agent
• Coding

Voice agents

• Speech recognition (ASR)
• Cognitive layer (LLM)
• Voice synthesis (TTS)

https://developer.nvidia.com/blog/how-to-deploy-real-time-text-to-speech-applications-on-gpus-
using-tensorrt/



Applications of LLMs in Two-sided 
Marketplaces
Customer support

• Automate handling of common inquiries (e.g., lost and found, complaints).
• Reduce response times and improve user satisfaction.

Personalized recommendation

• Use LLMs to analyze user preferences and suggest relevant products or services.
• Example: Recommending restaurants based on past orders and reviews.

Dynamic pricing and incentives

• Analyze unstructured data (e.g., social media, reviews) to adjust pricing strategies.
• Generate personalized incentives for users (e.g., discounts, promotions).

Fraud detection

• Use LLMs to detect fraudulent activities by analyzing text data (e.g., fake reviews, 
suspicious messages).



Case Studies
Customer support assistants

• Lyft + Anthropic

Discovery in search

• https://tech.instacart.com/supercharging-discovery-in-
search-with-llms-556c585d4720

• Inspirational and discovery-driven content

https://tech.instacart.com/supercharging-discovery-in-search-with-llms-556c585d4720
https://tech.instacart.com/supercharging-discovery-in-search-with-llms-556c585d4720


Challenges & Future Directions
Challenges

• Accuracy in agent response: hallucination, logical reasoning
• Bias and fairness: e.g., avoid biased recommendations or responses
• Scalability and compute: handling large volumes of real-time interactions

Future directions

• Multimodal agents: combining text, voice, images
• Real-time adaptation: agents that adapt to changing marketplace dynamics, continual learning



Live Demo

Food ordering from restaurant foreva.ai [Qin & Zhou, AAMAS 2025]



Marketplace Simulation

Tony Qin
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Overview
Why simulation?

• Test policies (e.g., pricing, matching) without real-world risks.
• Understand marketplace dynamics under different “what-if” scenarios.

Types of simulations

• Macroscopic: High-level modeling of marketplace dynamics.
• Microscopic: Detailed modeling of individual agents (e.g., drivers, riders) - agent-based modeling.



Modeling
Macroscopic modeling

• To understand impact of interventions in supply and demand on marketplace efficiency

Graphic equilibrium metrics (GEM)

• [Zhou et al., 2021] generalized asymmetric Wasserstein distance between supply and demand
• Dispatch effects accounted for through solving an optimal transport problem

Dual-perspective framework for two-sided marketplaces

• [Chin & Qin, 2023] Supply-demand gap index derived from GEM as expected market condition 
from a random rider (buyer) or driver (seller) perspective

• Shift in the dual-view indices offer insights on changes in marketplace efficiency.



Modeling
Microscopic modeling 

• Dynamics and growth of marketplace through modeling 
individual agents

• Modeling the Rise and Fall of Two-Sided Markets: Ghasemi 
and Kucharski (2024)

• Uses MaaSSim

Agent participation model

• Choice models over transportation modes and participating 
(competing) platforms

• Endogenous factors: driver income, rider waiting time, price
• Exogenous factors: marketing, word-of-mouth
• S-shaped learning and adaptation (faster at neutral util)

Evaluating platform policies



Modeling
Generative World Model

• Neural network-based foundation model that creates realistic simulations of market dynamics
• Enables study of complex interactions between participants

MarS

• [Li et al., 2025] MarS: a Financial Market Simulation Engine Powered by Generative Foundation Model.
• A financial market simulation engine powered by a Large Market Model (LMM)
• Generating order-level data that reflects actual market behavior, facilitating the testing and 

development of trading strategies in a controlled environment
• https://arxiv.org/pdf/2409.07486

https://arxiv.org/pdf/2409.07486


Modeling
Generative Adversarial Imitation Learning

• Simulate driver behavior for target-based driver incentives
• Explicitly models confounder policy to simulate competitor effects

Generators

• Platform actions, driver and competitor actions

[Shang et al., 2019, 2021]



Tools & Frameworks | Practical Considerations
Complexity

• Assess the intricacy of interactions between participants and choose a tool that can capture these dynamics effectively.

Scalability

• Ensure the framework can handle the scale of your simulation, especially if modeling large marketplaces.

Programming Expertise

• Select a tool that aligns with your team's programming skills to facilitate efficient model development.

Specificity to domain

• While general-purpose ABM tools offer flexibility, domain-specific simulators like MaaSSim can provide tailored features for 
particular types of marketplaces.



Tools & Frameworks
Repast

• A suite of advanced ABM tools that support the creation of agent-based simulations in various domains.
• Open source
• https://repast.github.io/repast4py.site/index.html

Variations

• Repast Simphony: Designed for standard modeling tasks, providing a rich set of features for building and analyzing 
simulations.

• Repast HPC: Tailored for high-performance computing scenarios, enabling the simulation of large-scale models.

Use case

• Suitable for simulating complex systems, including two-sided marketplaces, where understanding the interactions between 
different agent types is crucial.

https://repast.github.io/repast4py.site/index.html


Tools & Frameworks
Simulating rideshare dynamics

• Vehicle capacity: ride-hailing vs ride-pooling
• pre-/post-matching rider cancellation behavior
• Driver acceptance/rejection cancellation behavior
• Rider and driver participations

[Yao and Bekhor, 2021]

• “Ridesharing”: hitch service

[Chaudhari et al., 2020]

• OpenAI Gym-compatible

AMoDeus [Ruch et al., 2018], MATsim [Axhausen et al., 2016]

• Java-based simulation
• GUI and visualization tools



Tools & Frameworks
MaaSSim (Mobility as a Service Simulator)

• MaaSSim [Kucharski & Cats, 2020] is an agent-based simulator 
specifically designed to model mobility services.

• Used in Modelling the Rise and Fall of Two-Sided Mobility Markets 
with Microsimulation discussed previously

Key features

• It allows for the simulation of day-to-day dynamics in two-sided 
mobility markets, capturing the decision-making processes of both 
service providers and consumers.

Use cases

• Analyzing market entry strategies
• Understanding the co-evolutionary behavior of agents in the mobility 

domain

https://arxiv.org/abs/2208.02496
https://arxiv.org/abs/2208.02496


Practical Challenges in Simulation
Scalability

• Simulating large-scale marketplaces with thousands of agents.

Realism / Fidelity

• Ensuring simulations reflect real-world dynamics.
• Human behaviors

Validation

• Comparing simulation results with real-world data.
• On-policy validation

Industry settings

• Nuances coming from the production systems
• Maintainability
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