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What is a Two-sided Marketplace?

A two-sided marketplace is a market where one or more platforms facilitate interactions between two (or

more) distinct user groups. The platform's goal is to bring both sides “on board” by appropriately structuring
incentives, such as pricing and accessibility (Rochet —Tirole, 2006).

Key Characteristics

e Interdependence: The value for one side depends on the presence and engagement of the other.

e Platform as an Intermediary: The marketplace acts as a bridge, reducing transaction costs and
enhancing trust.

e Pricing Strategies: Platforms use pricing and subsidies to attract and balance supply and demand.
Beyond Pricing

Alvin E. Roth. Nobel Memorial Prize in Economic, @ SIGKDD 2018, 08/2018
“— In many markets, you care who you are dealing with, and prices don’t do all the work

— (In some matching markets (e.g., organ donations), we don’t even let prices do any of the work...) ”




Examples of Two-sided Marketplace
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Ride-sharing is a Complex System
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Digital Twins for Marketplaces

Digital Twins for Marketplaces refer to virtual replicas of two-sided marketplaces that simulate and
analyze real-world interactions between buyers and sellers. These Al-driven models integrate real-time data,
historical trends, and behavioral analytics to optimize decision-making, improve market efficiency, and test
policies in a risk-free environment.

Key Modules:

1)Supply-Demand Diagnosis — Identify inefficiencies and bottlenecks.
2JSupply-Demand Prediction — Forecast market trends and user behavior.
3Policy Optimization — Enhance pricing, matching, and incentives.

(4 Policy Evaluation — Measure impact before real-world deployment.
5)Lifetime Value — Maximize long-term user engagement and revenue.

Why It Matters? Why It Matters?

{74 Data-driven decision-making "4 Risk-free policy experimentation
"4 Improved efficiency and user experience "4 Long-term marketplace sustainability




Digital Twins for Marketplaces
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Spatio-temporal Causal Digital Twin

Key Components:

O  Macroscopic Business Indicators — The overall supply-demand balance is influenced by externa4
factors and platform policies.

Supply-Demand Matching Degree — Measures how effectively supply meets demand at a given time.
Supply Side — Availability of providers responding to demand fluctuations.

Demand Side — Volume of user requests at different times and locations.

Platform Policies (0,: Dispatch & Scheduling)

Platform Policies (0,: Pricing & Subsidies)

External Confounders — Weather, holidays, workdays, infrastructure, and government policies.

o000 d

Mathematical Framework:

Future macro indicators depend on supply, demand, and matching degree.

Matching degree is influenced by real-time supply, demand, dispatch policies, and environmental
factors.

Supply levels depend on past demand, matching efficiency, pricing, and subsidies.

Demand levels are affected by past matching, pricing, subsidies, and environmental conditions.




Supply-Demand Diagnosis

Fan, Z., Luo, S., Qie, X,, Ye, J., and Zhu HT. Graph-based equilibrium metrics for dynamic supply-demand systems
with applications to ride-sourcing platforms, Journal of American Statistical Association, 2021, 116, 1688-1699.
Chin, Alex, and Zhiwei Qin. A unified representation framework for rideshare marketplace equilibrium and efficiency.
Proceedings of the 31st ACM International Conference on Advances in Geographic Information Systems. 2023.




What is Supply-Demand Diagnosis?

Supply-Demand Diagnosis is the process of analyzing and identifying mismatches between supply and
demand in a given system. It aims to uncover inefficiencies, imbalances, and factors affecting the equilibrium
between what is available (supply) and what is needed (demand).

Key Components of Supply-Demand Diagnosis:

1.
2.

Data Collection & Analysis — Gathering historical and real-time data on supply and demand trends.
Hotspot Detection— Identifying shortages (demand exceeds supply) or surpluses (supply exceeds
demand).

Causal Analysis — Investigating underlying factors such as pricing, external market conditions, policies,
or operational constraints.

Impact Assessment — Evaluating how imbalances affect business performance, customer satisfaction,
and operational efficiency.

Corrective Strategies — Recommending policies, pricing adjustments, or operational changes to restore
balance.




Why is Supply-Demand Diagnosis important?

Prevents inefficiencies — Helps avoid overproduction, stockouts, or resource wastage.

Improves decision-making — Enables data-driven adjustments in pricing, inventory, workforce, or infrastructure.
Enhances market stability — Reduces volatility by ensuring better alignment between supply and demand.
Boosts profitability — Helps optimize costs and maximize revenues by addressing imbalances effectively.

Example Applications:

e Ride-sharing platforms: Diagnosing supply-demand imbalances in different locations and times
to adjust dynamic pricing.

e Retail & E-commerce: |dentifying stock shortages or excess inventory to optimize restocking
strategies.

e Healthcare systems: Assessing hospital bed availability against patient needs to optimize
resource allocation.

e Energy markets: Balancing electricity production with consumption to prevent blackouts or
inefficiencies.

/N



Graph-based Equilibrium Metric

Motivation
« A metric for measuring supply and demand equilibrium

« Objective function for improving strategies of dispatching, pricing, and

incentive optimizations

Graph-Based Equilibrium Metrics are a set of measures used to evaluate and
quantify the balance between supply and demand in complex systems that can be
represented as graphs (networks). These metrics help assess how well supply
nodes (e.g., service providers, resources) are matched with demand nodes (e.g.,
customers, tasks) while considering connectivity, constraints, and network effects.
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Graph-based Equilibrium Metric

1. Graph Representation:
o The system is represented as a bipartite graph (e.g., drivers «< riders in ride-sharing) or a general
graph (e.g., supply chains, logistics, or energy distribution).
o Nodes represent supply and demand entities at a certain level, while edges represent potential
interactions or assignments.
2. Matching Efficiency:
o Measures how effectively supply nodes are connected to demand nodes.
o Examples: Maximum matching ratio, average matching distance, or latency in matching.
3. Flow Equilibrium:
o Examines the distribution of supply relative to demand across the network.
o Example: Wasserstein distance (comparing the distributions of supply and demand over the graph).
4. Hotspot Identification:
o Identifies overloaded nodes or edges where demand exceeds capacity.
o Example: Edge congestion score (quantifies imbalance in flow through different pathways).
5. Dynamical Adjustments & Policy Evaluation:
o Assesses how small interventions (e.g., price changes, routing optimizations) shift equilibrium staig
o Example: Sensitivity analysis of equilibrium shifts with small perturbations.




Graph Representation

Dynamic Supply Map u(s, t)
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Matching Efficiency
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(1) Undirected (or directed) graph G = (V, E); weight matrix W =
(WU)If (‘Ui, ‘Uj) ¢ E, Wij = ©o.

(2) The transport cost on graph G from v; to v; is defined as
Kzo,(i,g},fi:):vi—»vj{zk Wikiksr" Vk € [0,K —1], ('Uik, vik+1) € E}

We can introduce a transport cost matrix on (G, W), denoted as C =

Cij =

(cij) € RN *N, which is asymmetric when the graph is directed.

(3) Two discrete Lebesgue measures u,v € M, (V) with locally finite
mass. We define #j = u(v;) and v; = v(v;) as the point masses at
vertex vj for the two. p = YN uiand v = YN, v; may be unequal to
each other.



Flow Equilibrium
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Graph-based Equilibrium Metrics (GEMs)
@ Framework

Our GEM on the weighted graph structure (G, W, C) is defined as

{lv—pal+24 c dy}
VXV

P2, v|G,C) = HEM, (V)f{,‘éﬁ+(y XV)

subject to an equality constraint and two transport constraints given by

=g, PN = ) y@uy)=m and (PLY@D= D v =k
V;EN ViEN;

Unbalanced Optimal Transport Problem
Finite Case

| P2YIG,C) = min{lv Il +4 D" )" cyvy)

ViEV vjEV

s.t. Z Yij = Hi, Z vij=0, and Z Yii=@ for Vv,V
VjE.N.' vjEN,- UiENj




Two-sided View of Marketplace

e Demand-centric view

it MitVit

Ag= Sy = E(i 1)~ v[miel Average rider perception of market

hh. 4 balance
e Supply-centric view

2 mitflit Average dri tion of market

As =" > _ By almid] verage driver perception of marke
2it Hit ' balance

= ~ Hi, M C i :
As = Ticer fie (log(50) +log(R)) g, =By 5, =Yt

If M=N
As = Dgr(fl|v) Ag =-Dkr(7||p)
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Spatio-temporal GEMs

Demand (t-1) Demand (t)

Macro index Macro index

(t-1) =) @)

Policy 6(t) Policy 6(t + 1)

4 — e

Supply-Demand Supply-Demand
Supply (t-1) Matching (t-1) Supply (1) Matching (1)




Dynamical Adjustments & Policy Evaluation

Experiment Design Ym(t) Relative Improvement(%) p—value
Dynamical Adjustments Answer Rate 0.76 1.16¢-12
A/B Finish Rate 0.36 4.32¢-3
e Real-Time Incentive Adjustments: GMV 0.86 2.91¢-6
e Reallocation of Resources: GEM -0.80 4.06e-2
L4 HOtSpOt Mltlgatlon Answer Rate 0.01 0.96
A/A Finishing Rate 0.01 0.96
Policy Evaluation GMV -0.08 0.72
GEM -0.25 0.43

e Impact Analysis of Pricing Policies:
e Fairness & Accessibility Assessment:

GEM of day 2018/12/08 for ¢city H

so00  ® Ctrl 7 -
e Longitudinal Performance Tracking: oo Lo B0l L L ]
o  Tracks policy effectiveness over time - 2P e e e
using dynamic equilibrium graphs. : =

10000

o  Provides adaptive policy
recommendations based on
equilibrium shifts.

10:00 15:00 20:00 24:00

(B)

7:00 —7:30 a.m. 7:30 — 8:00 a.m. /
lﬁ‘




Five Key Components of the SDD System

A. Supply-Demand Estimation

B. Prediction Models for Supply-Demand Forecasting

C. Spatiotemporal Value Calculation

Graph-Based Equilibrium Metric (GEM) Analysis: T ]
e Reinforcement Learning:

D. Clustering and Demand Hotspot Identification ] T

)
E. Intelligent Incentive & Pricing Mechanism , |

(Small-Sized) (Medium-Sized) (Large-Scale)
Hotspots




Supply-Demand Prediction

Geng et al., Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting. AAA/ 2019.
Yang, R., Dai, R., Tang, X., Zhou, F., and Zhu, H.T. Spatio-temporal prediction of fine-grained origin-destination
matrices with applications in ridesharing. In revision.

Wang, S., Luo, S.C., and Zhu, H.T. Causal probabilistic spatio-temporal fusion transformers in two-sided
ride-hailing markets. ACM Transactions on Spatial Algorithms and Systems, 2024, 10, 1 - 18.




Why Is Supply-Demand Forecasting Important?

Supply-Demand Forecasting is crucial across various industries as it helps organizations optimize resources,
reduce inefficiencies, and improve decision-making.
1. Optimized Resource Allocation Industries Where Supply-Demand

. Forecasting Is Critical
2. Enhanced Customer Experience

e E-commerce & Retail: Managing inventory and

3. Cost Reduction and Operational Efficiency customer demand.
e Transportation & Logistics: Predicting
4. Data-Driven Decision Making passenger demand and vehicle availability.
e Healthcare: Ensuring medical supply availability
5. Facilitates Dynamic Pricing & Revenue Optimization and hospital capacity management.
e Energy Sector: Balancing power generation
6. Reduces Risks & Enhances Stability with consumption needs.
e  Manufacturing: Optimizing production
7. Supports Sustainability & Environmental Efficiency schedules and raw material sourcing.

/N



Supply-Demand Prediction in Ride-sharing

Predicting the demand-supply distribution

Multi-modal data fusion
Complex spatio-temporal patterns

Heterogeneous space among cities
Heterogeneous feature among tasks

Causal inference
Model interpretation
Impact analysis

(@ T
A

Improve the service quality

Drivers =
S—|

* Reduce empty driving

Riders

* Intelligent travel guidance

* Less queueing time

Platform e

¢ Fill demand-supply gap
* Recognize the market
e Better dispatching and scheduling




Key Challenges in Supply-Demand Forecasting

Supply-demand forecasting is highly complex due to the interplay of platform policies, environmental factors,
economic conditions, social and policy-driven influences, and infrastructure. Moreover, supply is primarily
driven by demand, requiring adaptive forecasting models that consider dynamic and uncertain real-world conditions.

1. Policy & Platform-Driven Challenges 4. Economic & Market Dynamics
a) Platform Policies a) Inflation & Currency Fluctuations
b) Regulation & Compliance Constraints b) Changing Consumer Behavior & Demand Elasticity

c) Bullwhip Effect in Supply Chains
2. Infrastructure Constraints

a) Transportation & Logistics Bottlenecks S. Data & Model Uncertainty in Forecasting
b) Energy & Resource Limitations a) Confounding Factors in Predictive Models
c) Digital Infrastructure Gaps b) Data Scarcity & Inaccuracy

c) Feedback Loops & Non-Stationarity

3. Environmental & Random Event Factors o
a) Climate Change & Natural Disasters 6. Linking Supply & Demand: The Core Challenge
b) Pandemics & Health Crises. Infrastructure-Aware Forecasting

Geopolitical Risks & Global Conflicts Real-Time Demand Sensing
Dynamic Supply Adjustments

Policy-Aware Equilibrium Models //lﬁ"
L (Y




Hierarchical supply-demand forecasting System

A hierarchical supply-demand forecasting system is a structured, multi-level approach that
models macroscopic business indicators while simultaneously predicting the joint
distribution of supply and demand. This system integrates platform policies, economic
factors, environmental influences, social trends, and infrastructure constraints to provide
adaptive, dynamic forecasting in uncertain real-world conditions.

A. Macroscopic Level (Business Indicator Prediction)

e Objective: Understand how market equilibrium metric, demand elasticity metrics, and
infrastructure utilization index influence key business metrics.

B. Meso Level (Supply-Demand Matching & Policy Integration)

e Objective: Understand how policies, infrastructure, and economic conditions affect
supply-demand matching.

C. Micro Level (Real-Time Adaptive Forecasting)
e Objective: Predict local supply-demand fluctuations in dynamic environments.

/N



Micro Level Supply-Demand Forecasting

Spatiotemporal Multi-Graph Convolution Network for Ride-Hailing Demand Forecasting

Goal: Predict ride-hailing demand at the region level using historical data
Algorithm 1: Spatiotemporal Multi-Graph Convolution Network (ST-MGCN)

Authors: Geng et al.,
Proceeding: AAAI 2019

Spatio-temporal Prediction of Fine-Grained Origin-Destination Matrices with Applications
in Ridesharing

Goal: Accurate OD demand prediction to enhance ridesharing efficiency
Algorithm 2: The Coarseing-Encoder-Decoder network for fine-grained Origin-Destination data (OD-CED)

Authors: Yang et al.,
Journal: In revision for Journal of Computational and Graphical Statistics

/N




Algorithm 1: ST-MGCN
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Algorithm 1: ST-MGCN

Temporal Spatial

/—@raph Generatim /;0 e o—\ /—- modeling oﬂ

Neighborhood

0, v; and vj are adjacent
Ay = i

i otherwise

CGRNN MGCN
* Use 1 layer GCN to invoke context * Use stacked GCN layer to extract
information spatial information
POI Similarity Use spatial global pooling to get * The locality is determined by graph
_ temporal gate Laplacian and convolution degree
Bagy= sim(Py, P"i) Apply gate to input signal q * A proper way to extract spatial
Aggregate gated signal by share- information under arbitrary

Road connectivity weight RNN relationship
Ac;j = max(0, conn(vi,vj) — Anjij)

> SELLE ¥

Fusion and output




Experiment

Methodology

RMSE
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Algorithm 2: OD-CED

Challenges:
1. Scalability - OD matrices grow
exponentially with more spatial divisions.
2. Data Sparsity — Over 90% of fine-grained
OD flows have zero demand.
3. Semantic & Geographical Dependencies —

Travel demand is influenced by both
regional function (e.g., residential vs.
commercial) and spatial proximity.
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Algorithm 2: OD-CED

OD-CED Model: A Novel OD Prediction Framework

/ Learning \
Stage

e Space Coarsening Module: Merges )T%lﬁ )i‘;“ o
A= R Sy ETIC TN
fine-grained cells into super-cells to mitigate f[%‘ ?L (%) (? ?? [%

sparsity. [

. Transformer Transformer

e Encoder-Decoder Architecture: Captures _* { Encoder } Decoder J
beddi

semantic and geographical dependencies LI \@ At~ I —é———éﬂ
effectively. == SR

e Permutation-Invariant OD Embedding: Learns
robust representations of OD flows.

oD / e quxd Target Grids’ queries
Qbedding B ¢ R /

@



Experiment

Dataset Performance Comparison (City-C & City-S): City-C City-S

Method
e City-C: wMAPE | RMSE | CPC | wMAPE | RMSE | CPC

o  RMSE reduced from 1.255 (GEML) — 0.905 (OD-CED)
(~28% improvement).
o WMAPE reduced from 0.667 (GEML) — 0.411 (OD-CED) OLSR 0.822 1419 1 0.324 1 0.816 1351 1 0.333

HA 0.813 1.442 0.348 | 0.821 1.435 0.355

(~39% improvement). LASSO | 0.807 1.424 | 0.359 |0.813 1.349 | 0.337

e City-S:
o RMSE reduced from 1.146 (GEML) — 0.740 (OD-CED) “STN 0.8 [ 1570 10354 10.121 11217 1 0.451
(~35% improvement). MRSTN | 0.788 1.380 | 0.351 | 0.766 1.253 | 0.464

o WMAPE reduced from 0.605 (GEML) — 0.323 (OD-CED)

. GEML 0.667 1.255 | 0.540 | 0.605 1.146 | 0.597
(~47% improvement). 7 i 7 7

STGCN 0.681 1.337 0.488 | 0.596 1.210 0.674

Training Time Comparison (per epoch on V100 GPU):
OD-CED | 0.411 0.905 | 0.776 | 0.323 0.740 | 0.889

e OD-CED: 22.12s

e STGCN: 28.81s

° GEML (state-of-the-art): 39.63s CSTN | MRSTN | GEML | STGCN | OD-CED
e CSTN &MRSTN: 1200+ seconds # of Params (in millions) | 054M | 0.67M | 29M | L6M

[ ]

OD-CED is 2x faster than GEML and over 50x
faster than CNN-based methods.

Training Time (in seconds) | 1222.13s | 1602.14s | 39.63s | 28.81s




Meso Level Supply-Demand Forecasting

Causal Probabilistic Spatio-Temporal Fusion Transformers in Two-Sided Ride-Hailing Markets

Goal: Predicting supply and demand in ride-hailing platforms using a causal, interpretable, and
scalable forecasting framework

Algorithm 3:, A collaborative causal spatio-temporal fusion transformer (CausalTrans).
Authors: Wang et al.,

Journal: ACM Transactions on Spatial Algorithms and Systems, 2024




Algorithm 3: CausalTrans

/5 Coliaborative Problem ‘Forecasting

P(xy(t + 1:t + Tinax) X (: ), Z,(: t + Trmax)), 1) * Given q € Q = {10%, 50%, 90%}, then quantile
P(yy(t + 1:t + Trmax) Yo £), Xy i t + Trmax), Zo (it + Tiax)),  (2) loss QL4 at each point q is denoted as:

QLq(xt,Qf_T) = {q = l(xt < fg)}(xt = fg)-
where
x,(t) is demand at time t in grid v; * Then final quantile loss is:
t) is su at time ¢t in grid v; Tmax Qq(Xe )
Y(t) is supply g Lossg = ZrenZqeo Trmt™
z,(t) is external covariates (e.g. weather and holiday) at time t in grid
v; * We introduce quantile risk as a key metric:

Tmax IS @ pre-specified time length, and grid v € V. 2 Ex,eﬁ Z:':{u Q Lq (%, 2;;_1)

Risk, = -
> Exteﬂzr:iulxtl

where {1 is the test dataset.

)




Algorithm 3: CausalTrans

Output (quantile loss)

The overview of CausalTrans framework: Encoder Decoder

T.A.
The framework consists of three essential .
£ PR Clustered
components: Fast S.F. (fast graph spatial fusion), ranse. | resr. | ™ oupus
C.A. (causal attention), and T.A. (temporal @mvee Pmvee
Inputs Targets
attention). Demand and supply are trained e e

() CausalTrans framework (b) Fast S.F. : fast spatial graph fusion

separately in sequence. y—)

Encoder
TA.

Historical W=

The Fast S.F. consists of self-clustering with GAT S e ¢) | sortnn |

Or, Oy and O

and fast attention.

ﬁg Enuoder EB
ES 2
The C.A. applies offline trained causal weights 6 5 ,:“:n*z: it
H . Clustered |_ _Clustere i
to online treatments evaluations. inputs
J
The T.A. aims to keep ordering self-attentions. BRgRSRg o

Output Sequences . y
(c) C.A. : causal attention units (d) T.A. : temporal attention units




Causal Attention Mechanism

We transfer the weights of external covariates to causal weights by HTE methods (e.g. double machine
learning).

Algorithm 1 Causal Attention Algorithm with DML Extenal \§

Covariates
Input: Given demand matrix z(: t) at a grid v before time ¢, three kinds of treatments includes weekday and
hour slots T'(: t) = {W (: t), H(: t)}, weather vectors W : t), and holidays one-hot vectors H : t)

Hasop  /  atop

Ol'mrvaﬂons

Output: causal effect coefficients 67 for T'(: t), Oy for W(: t), and 8 for H(: t) (demandisupply) SN

1: Take 6 as an example, and suppose that a AA group and AB group on T'(: t) is Tas = Tap = {} lfausalnﬁfﬁma‘ws

2: for all {Tw(t()),Tw(tl)} € {MOTL,T’LLE, Sun}, {Th(to),Th(tl)} € {]., 24} do Or, By and Oy

3 ifT,(to) = Tw(t1), Th(to) = Th(t1), Pr-rest (z(to), z(t1)) < 0.05 then ’

4 forallt; € {:to} and t] € {: 1} do m

5 Calculate 1st-order differences Z(t; : to) and Z(t] : ¢1) T2 Encoder 58

6: if Pross (T(t) : to)), Press(T(t; : t1)) and Progese (F(th : to), Z(t; : t1)) > 0.05 then gg CA. £

7: Taa.append([(z(t) : to),z(t] : £1))]) e A'Vt'ta;';%‘:‘ é’g

8 T,?B.append([(z(tg),a:(tl))]) o | T 8

13: enfinf?) :f Clustered Feod Clustered

: I Foward  []™~ "inputs’
11:  endif o ki
12: end for I}
13: Do DML on T's4 and T's g datasets and estimate treatment coefficients 07
14: Repeat from Step 2 and estimate 6y and f by different DML. OuiputSequences
15: return Or, By, and 0 Output Sequences

i £ (c) C.A. : causal attention units put Seq
(a) causal attention algorithm (b) how to work in ConvTrans

step 1: external covariates: weather, holidays and subsidy;
step 2: build various of control groups and treat groups;

step 1: offline training causal attention;

step 2: add above weights in multi-head
step 3: do DML and get causal attention or weights. attention

/N



Causal Attention Visualization

—demand | [ e treatments(rainfall) [ 1-2
demand_diff(24) [0 causal_attention
604 B probabilistic forecasting .
AB Group 2 Predicted Demand L 10
40 AA Group 1 AB Group 1 AA Group 2 0.8
+0.6
20
' 0.4
.
i
01 ] i
é |
H i | 0.2
. P ] o
i Rainfall QRS | !
-201 “ i, et i iy T Pt ~'f-,‘ b §=,
....... asenssannnssnatesanscsenneannsnns’® Sesasencess “essessasnessnnnneert O ,”“"“.“"‘"““““.S.. Cesassssssannnss 0 T A U N T PP g I\ feabivinne -0-0
2018-06-25 2018-06-29 2018-07-01 2018-07-05 2018-07-09 2018-07-13 2018-07-17

*“AA group 1” and “AA group 2” are regarded as comparable contexts;

*“AB group 1” and “AB group 2” is control group and treatment group;
*Do DML and get causal attention weights.




Experiment

(a) Risk_(50%) losses on the retail and ride-hailing datasets.

ConvTrans Seqg2Seq MORNN DeepAR DMVST ST-MGCN TFT CausalTrans
Retail 0.429° 0.411° 0.379° 0386 0.403 0.395 0.354°  0.352(-0.6%)
koot 07) 050089 0803 042080 REso grid search to optimize hyperparameters
e (o B0 040045 045 00 0m o 0 07 483 peepaR outperforms Seq2Seq and MQRNN
e (oibmd 0% U006 0% 0 07 0 WOWI  pocause of Poisson and weather covariates;
Lo Nom0 09 00707 0% 0 0T LMD Cousalfrans outperforms other methods

primarily due to causal estimator DML;

(b) Risk_(90%) losses on the retail and ride-hailing datasets. *CausalTrans achieves lower losses on supply

than demand based on both causal

ConvTrans Seq2Seq MQORNN DeepAR DMVST ST-MGCN TFT CausalTrans . .
: = = T : relationship;

Retail 0.192 0.157 0.152 0.156 0.156 0.155 0.147 0.143(-2.8%)

Ride-hailing (1d, city A, Demand) ~ 0.238 0.208 0.205 0.205 0.208 0.195 0.192 0.164(-14.6%) 'Long-term pred iction fOCUSGS on un biased
Ride-hailing (1d, city A, Supply) 0212 0.177 0.164 0.162 0.173 0.165 0.160 0.142(-11.3%)

Ride-hailing (1d, city B, Demand)  0.208 0.176 0.159 0.158 0.170 0.157 0.155 0.145(-6.5%) distribution estimation.
Ride-hailing (1d, city B, Supply) 0.205 0.197 0.157 0.188 0.169 0.151 0.149 0.139(-6.7%)

Ride-hailing (7d, city A, Demand) ~ 0.324 0.306 0.276 0.289 0.286 0.280 0.297 0.244(-11.6%)

Ride-hailing (7d, city A, Supply) 0.259 0.233 0.207 0.204 0.237 0.248 0.237 0.173(-15.2%)

Ride-hailing (7d, city B, Demand)  0.288 0.269 0.241 0.240 0.252 0.255 0.238 0.216(-9.3%)

Ride-hailing (7d, city B, Supply) ~ 0.214 0.184 0.177 0.179 0.168 0.197 0.204 0.153(-8.9%)

/A
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Tony Qin
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Overview




Overview

Heterogeneity

. Ridesharing, vacation rental, retail, jobs, food delivery, consulting works, ...
. Core problems in each domain have important unique characteristics.
. Primary focus on ridesharing, but briefly covering other select domains whenever appropriate

Challenges

. Multi-agent, multi-task coordination
. Real-time decision-making
. Fairness

=\




Reinforcement Learning Primer

Environment

State, s; and observation o;

= 5, E S, state space (discrete or continuous)

= For example, agent’s location

=  Fully observable environment: o, = s, State, Reward Action
= Partially observable: o, = o(s;), e.g. what agent sees B E A
Action, a; Y4
= q, € A, action space (discrete or continuous) B |
=  For example, going forward/backward, turning left/right Agent
Reward, 7; L]
= 1.~ R(S¢ ap), Ris the reward function. ;.

For example, reaching the exit, reaching some goals, penalty for move (-1 per move)

Markovian property

In Maze example, transition is deterministic.

®  S;41~P(S¢s1lse ap), distribution governed by transition




Reinforcement Learning Primer

Policy

Arrow is output of policy:
action to be executed at
given state

Start
=  Governs agent’s decision/behavior

= a~7(s)

= Function of state: deterministic or stochastic

Value function

= Estimate of future long-term reward

- QTL’(S’ a) = E[rO - 2 yrl + yer Feens |SO =S, aO = a] 43 |12 (-1 |10 | 9

Reward =-1 for

= V7(s):=E[rg+yr +y*r, + sy =] each move

Environment model

State values shown
= Dynamics that governs the change in state with actions

= Transition probabilities P and reward function R.

=\




Reinforcement Learning Primer

Value-based methods

«  TD-learning (V function, on-policy), Q-learning (Q function, off-policy)
«  DOQN (deep Q-networks)

Policy-based methods maxy, J () = V7(so) | P
Parametrize Tt as (0), then can do stochastic gradient ascent: M‘_HJ \
. Policy gradient, advantage (Q-V) - 4 e
. REINFORCE O = O + G0 e =
. Actor-critic (AC), SAC V](8) = Xs Un(s) 2o Q7 (s,a)Vgm(als, )
. PPO 1 (s): on-policy distribution of state s under Tt

Model-based methods

. Maintains a learning model of the environment, i.e., P and R.

=\




Transactions in a Marketplace

Pairing of supply and demand

. Centralized decision: ridesharing, food delivery

«  Search and select: AirBnb, LinkedIn
. Rebalancing: specific to spatiotemporal operations /\

Prici ng Supply Demand

Merchants, sellers, % Platform H Buyers, customers,
and service providers and clients

«  Centralized: set by platform

. Decentralized
- set by supplies (or service providers): Airbnb, Amazon

- set via bidding: Angi
- set by both (buyers set budget, service providers send bids): UpWork
«  No price involved: LinkedIn (but platform charges subscription)

Growth & Incentives

. Maintain both supply and demand populations

=\




Ridesharing System Architecture

~
I :D°:ne

Orders,
Shareable order
combinations

dle vehicles,
In-service
vehicles

/

Qin, et al., 2024. Reinforcement Learning in the Ridesharing Marketplace.
Synthesis Lectures on Learning, Networks, and Algorithms, Springer.
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Online Matching | Driver-centric

MDP (Markov Decision Process)

Modeled around a driver: (location, time, supply-demand context)

Training

Offline batch learning: TD learning

TO T T2
sO ::
s2
I
\_//
Vacant 1 V,(Sy) < V;(So) + a(0 + vV, (51) — Vi (S,

)

Serving : V(S;) « V;(51) + a(? + YZVn(Sz) — Vz($1))

=\

evaluation

Vas vp
m ~ greedy (V)

improvement

Ty —b/U*

[Sutton textbook]

[Xu, et al., 2018; Wang, Qin, Tang, et al., 2018;
Qin, et al., 2020]

Vs T



https://mitpress.mit.edu/books/reinforcement-learning-second-edition

Batch RL for Online Matching

TO T1 T2 o Discounted value
Esttrip price  of destination ~ Value of origin
— _ I | |
S0 s1 | a0 —— |
W o0 (V™) 1= PO 4 A(To7+7e )V"rd(g(ld(l), t4?)) = V™a(s(z)))
s2
e
\_//

Vacant : V,(Sg) < V;(Sp) + a(0 + ¥V, (S1) — Ve (Sp))
Serving . V,,_-(Sl) « Vn(S1) + a(f + szn.(Sz) - Vn(Sl))

G
@
@

.
(@)
O

© 00 @ @

Temporal-difference Learning
[Xu, et al., 2018; Wang, Qin, Tang, et al., 2018;

Qin, et al.,, 2020]
I
[ |
I




Trend

2018

[Xu, et al., 2018]

Offline tabular TD(0)
[Wang, Qin, Tang, et al.,
2018]

Single-agent DQN

2019 INFORMS Daniel H.
Wagner Prize

[Tang, et al., 2019], [Qin, et al., 2020]
CVNet: Offline deep value network,
spatiotemporal embedding

2020 KDD Cup

RL Track: Learning to Dispatch
and Reposition on a Ridesharing
Platform.

2021

[Tang, et al., 2021]

V1D3: on-policy and offline
ensemble, for joint dispatch
and repositioning

Offline/batch RL Online RL

2022

[Eshkevari, et al., 2022]
RLW: online value iteration
with practical techniques

[Han, et al., 2022] OSV:
online value iteration with
linear approximation

2023 INFORMS Franz
Edelman Finalist Award
[Azagirre, et al., 2023] A better
match for everyone:
Reinforcement Learning at Lyft




Online RL @Lyft

Online value iteration

Learning driver values online
Generate real-time matching

decisions

First full-scale
industry deployment
of an online RL

method

Trip fares,
Idleness
TO m T2
s0 /\\s:

Real-time
matching
decisions \e e
b7
- P\
| SO =
@
>\
A T gters'
Online supply
values

s2
s
=

~

Learning the driver values
online and on-policy

A better match for everyone: Reinforcement Learning at
Lyft. Xabi Azagirre, Akshay Balwally, Guillaume Candelli,
Nicholas Chamandy, Benjamin Han, Alona King, Hyungjun
Lee, Martin Loncaric, Sebastien Martin, Vijay Narasiman,
Zhiwei (Tony) Qin, Baptiste Richard, Sara Smoot, Sean
Taylor, Garrett van Ryzin, Di Wu, Fei Yu, Alex Zamoshchin.
INFORMS Journal on Applied Analytics. 2023.



Online Matching | Online RL

How does online RL differ from batch RL in practice?

. Algorithm: needs to handle more uncertainty since trips may not have fully
completed

. Engineering: high performance system to meet the high throughput
requirement of a large-scale rideshare platform

Algorithmic techniques

. Expectation-based value updates
. Reward smoothing
- Assignment graph edge standardization
. Real-time adaptive graph pruning
. ADAM for value updates
- RMSProp: adapt to the variance, magnitude, and frequency of updates
. Linear factorization and sparse coding for value approximation
- Geo and time features

=\

DiDi [Eshkevari et al., 2022]

Lyft [Han et al., 2022]




Online Matching | System-centric

Global state context

e

Supply and demand over all grid cells E -l —_— | i‘
Other relevant information: waiting time, intents b ;

\
Action space \'i' 1' |

Combinatorial by nature .
—r l
Remedy: serialize the assignments }l .
y g b

e

BF:

@ =N\



Online Matching | System-centric

Sequential decision-making process

State space

. Current time

. Vehicles status: # vehicles with destination d and particular
remaining ETA

. Rides status: # riders requesting rides from o to d

Action space

. Match a driver to a request, reposition a driver, idle (“do
nothing”)

Reward

c(St,i» Qi)

c{ (o,d, n), if action a;; implies car-passenger matching,

System action att, a_t

Decompose into a sequence of atomic actions,

each addressing a single available vehicle

Atomic action, a_ti = feasible “trip” (o_ti, d_ti)
After all available vehicles have been covered,
system state s_t->s_t+1 (random request arrivals,

time advance, idle drivers)

= (am A, - aut)

[Feng et al., 2021]

—cf (o, d), if action a;; implies empty-car routing. Learning

=\ 3

PPO objective
MC rollout for advantage estimation

/N



Online Matching | Multi-agent RL

Mean-field multi-agent RL

Agent: vehicle

e q a Joint action: mean action
i of neighborhood

Global reward

Environment

Actor2 [¢-° !

i =-» Actor1

[Li et al. 2019]

Multi-agent RL with KL-divergence regularization Hierarchical Multi-agent RL

minL = || Q(S, a) - [r + J/Q(s’,a’)] "2 + A'DKL j = Attention

[ r——.

Agent: vehicle L am 4—&\ Agent: grid cell(s)
'S & orker

No explicit communication Explicit communication

: v v L il ‘:
[ ] [Zhou et al. 2019] [Jin et al. 2019]
]
[ ] (N




Online Matching | ADP

T
Approximate DP Objective: max E[Y Y C(S,X"(S))|S.]
el i £ & Yt 0
Supply constraints:  x =R ,Va€A A
tad ta
deD(a)
Demand constraints: ) x <D ,Vvde€D > X,
tad td
a€A(d)
Non-negativity: x =20,Vad
tad /

c@,,x)=xc,x, . Iisthereward function, where c . isthe profit (or revenue) of matching a
ad

driver at a to a request over route d at time t.

Xt“(St) = a function that determines X, given S, i.e. the solver for the assignment problem

@ =N\ /N




Approximate DP

o References: [Simao. et al.. 2009] and [Al Kanj. et al.. 2020]
e Bellman equation for the optimal policy X*

Xt(St) = arg rxng(x (Ct(St, xt) + yE[Vt+1(St+1)|St, xt]

t ot

e Post-decision state

St ——) Stx — St+1

X D,

X:(St) = arg max (C (S, x) + ny(Sf)),
X EX,

where V(S)) = E[V,, (S, )IS.]l,and V(S) = max (C(S,x) + YV,(5))
x X,

@ =N\ N



https://castlelab.princeton.edu/html/Papers/Simao_et_al_SchneiderNational.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0377221720300540

Dual-based Forward-looking Value Functions

e Marginal values as decomposition of the system-level forward-looking value

ViEH =V, =57

2V ¢ (adya ZS(ad)x —Z

t'a' tad

n

v represents the marginal cumulative value of a driver in @’ from time t’” over a future horizon.

tl,a’

e Algorithm for steps 1to T within the n-th episode of dispatch

) vad " Solve step-t matching problem.

Update value function at (t,a)

— v «1l—-a)r. +au using supply dual variables u,
t,a n’ ta n ta
] via TD-like model-free updates

/N



Online Matching | Decentralized

Decentralized mechanism

. Demand broadcasting
- Platform broadcasts the demand to multiple service providers.
— Service providers bid for the request: by price or by acceptance speed.

Applications

«  Some ridesharing platforms (mostly in the early years of this vertical)
. Handyman or consulting projects: Angi, Upwork feasible set of sellers

Variations @ m

«  See “search & recommendations” and “pricing”

demand




Online Matching | Demand Broadcasting

Ridesharing case study

. Zhang et al. A Taxi Order Dispatch Model Based on Combinatorial Optimization (KDD 2017)

Motivations

. Nearest-driver matching: ignores global optimization
. Global Success Rate: Maximizing completed rides, not just immediate matches.
- User Experience: Reducing wait times (dispatch time) and cancellations.

Technical highlights

- Driver Acceptance Prediction: Logistic Regression (LR) model estimates acceptance
probabilities.
* Order Dispatch as a Constrained Optimization Problem:
Orders are assigned to multiple drivers.
The first driver to accept wins the order.
Hill-Climbing Algorithm optimizes the global success rate.

=\




Rebalancing (Supply Repositioning)

Motivation 7\ i) S @

- To proactively relocate idle vehicles to improve individual or system-level

income performance

Driver perspective -

«  Virtual “ride” with platform guidance = ('b)

. Usually not a long trip: driver acceptance

[Wei et al., 2023]

Task Completed

9443 12343 2343 65
Score Revenue  Service Oniine
distan "

Task Received

System perspective

9443 12343 2343 65
e i

. Intervention of supply distribution e e ke re

@ © =

over a grid system o o

Task -
Idle vehicle Avfve byiE5am; Repositién task completed!
g =
RYEFR -
Mode  Oniine, Inservice  Exit Please arrive by

|
|
r— [Jiao et al., 2021]

Illustrations of a driver repositioning assistant




Rebalancing (Supply Repositioning)

Driver-centric formulation

. Each vehicle executes repositioning [ dispatch J [ reposition ]
independently.

[ I ‘,y"u\",m;) i
- , Yk € O4(s")
YN Va(s!)

Zjc0q(st) €
>
>

State space

l |
l f
2 |
. Can share with the dispatch/matching case | ) H :
I D I
Action space : e = :
q
: : . . ' - = |
. Neighboring cells in a grid-cell system | 3 ,
I Y H | '
r Vs |
_ ek Vo(sp) ,
! {
P(Sk) o Al; - §59 Vk € Od (S ) Tang, X., Zhang, F., Qin, Z., Wang, Y., Shi, D., Song, B., Tong, Y., Zhu, H. and Ye, J., 2021,
Z : i e"f 4 VO(Sj) August. Value Function is All You Need: A Unified Learning Framework for Ride Hailing
je€0y4(sh) Platforms. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &

Data Mining (pp. 3605-3615).

= /N




Rebalancing (Supply Repositioning) | Taxi
Routing

Dynamics

= Driver performs repositioning upon idling, incurring a non-positive cost.
= During repositioning, the platform can assign an order to the driver at any time.

= The driver can also stay at the current grid cell.

Environment model
= Atstate s, probability of being dispatched: P, probability of being idle: P& = 1 — P)d

= Current state: s, target state: s;, ETA: Af(sg, 5;)

stay stay

reposmon reposmon
7& § Q-

_
- dlspatch dlspatch Jiao, Y., Tang, X., Qin, Z.T., Li, S., Zhang, F., Zhu, H. and Ye, J., 2021. Real-world
ride-hailing vehicle repositioning using deep reinforcement learning.
_ Transportation Research Part C: Emerging Technologies, 130, p.103289. m




Rebalancing (Supply Repositioning)

Interpretation

Tree search
. Tree search = computing and

comparing expected path values Q(s,0)
Py = Pl
‘ :' max
‘7 04 - 02
Other approaches ST N T
; . A \‘,,
. Coordination through independent 1‘ v ;V
learning + global contextual info \ ‘ 3 .
[Lin et al., 2018], [Oda & Joe-Wong, \\\ v Y v
2018], [Zhang et al., 2020]

«  Bi-level MARL: [Shou & Di, 2020]

=\

[Jiao et al., 2021]

Expected path value

planning

Black solid: reposition
Red dotted: dispatch
Black dotted: dispatch or reposition




Rebalancing (Supply Repositioning)

System-centric formulation

. Determines repositioning actions for all vehicles: joint actions

Modeling

«  Global state information
« Aggregate level actions: e.g., number of idle vehicles to reposition from cell i to cell j at time t
- Problem size independent from number of vehicles

Goal

. Influence future supply distribution to match better with demand so as to maximize total income and aggregate
utilization

RL works

« [Fengetal, 2021 PPO
[Mao et al., 2020] Batch AC: outputs a distribution of vehicles to allocate to each neighboring destinations

=N /.




Rebalancing (Supply Repositioning) | MPC

Model-predictive control

Uses short-term demand forecasting to plan future actions
Usually ignores (and is impractical to consider) long-term effects | offine Poiicy Evaluation 5 |

{ { Online Vehicle Reposition Send the repositioning |
. . ! M e 2 i1 't recommendations to each
due to computational complexity 5 s : o icke driver
0
LP formulation with lookahead Trajectory Data
Using previous M timesiots amival rates
to predict future T timesiots arrivals
«  LP based on fluid model for Short-Term Optimization Offiine Training
a 3 QOutput a Repositioning Policy
—  Models repositioning rate (only a fraction of drivers comply). eVt
- Relaxes flow constraints to account for system V) = v'ewe-w;?j;l)ue Mmm "
nonstationarity.
. Reinforcement Learning for Long-Term Rewards
—  Uses value function approximation to capture future Wei, H., Yang, Z., Liu, X., Qin, Z., Tang, X. and Ying, L., 2023. A
demand-supply effects. reinforcement learning and prediction-based lookahead policy for vehicle
—  Trained using historical driver trajectories with TD learning. ?POSWOSW;Q in SONTG ridg—;gi)“ﬂg S%Y;‘tgqsé SIGEEE Transactions on Intelligent
- _— R ransportation Systems, , Pp. - .
. Real-Time Prediction & Optimization

LSTM-CNN based arrival rate prediction.

Online updates to optimize fleet movement over multiple
time steps (T-step lookahead).

/N



Search & Recommendation

Overview

. Generalized form of online matching
«  Works specifically for decentralized transaction-making
- In a centralized system (e.g., ridesharing), search collapses into online matching.
. Presents relevant supply options to demand
. Presents relevant requests (demand) to service providers (supply)

Domain-specific problems

. Retail: personalized product ranking (from different vendors)
. Vacation rental: property visibility optimization
. Food delivery: restaurant discovery

Difference from online matching

. Presents multiple service providers to the requester/buyer. The buyer makes the final selection.
. In online matching, the system presents the single option to the buyer.

=\




Search & Recommendation

Objective
. To best meet the buyer’s needs so that a transaction is most likely to occur

Trade-off considerations

. Prices associated with the recommendations in the search results
- Too high: demand lost
— Too low: platform loses on revenue
. Relevance of the search results to the buyer’s demand
- Jobs: matching roles from hiring teams
— Rental: location and features of the properties
- Retail: item features
— Food delivery: food items that the store offers
. User experience
- Customer desires quick and relevant match

=\

There’s a symmetric problem for

recommendations to sellers/freelancers.

/N



Search & Recommendation | Case Studies

Meituan's Takeout Recommendation System

. Zhang et al. Modeling Dual Period-Varying Preferences for

Takeaway Recommendation (KDD 2023)

Key challenges

. Dual interaction-aware preferences
.  Time-varying preferences

Technical highlights

. Dual interaction-aware module
. Time-based decomposition module
«  User-/time-aware gating mechanism

Traditional Recommendation | Takeaway Recommendation

Mornlng Morning Night
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Search & Recommendation | Case Studies

Embeddings for improving search relevance at Instacart

- Instacart Transformer-based Embedding Model for Search (ITEMS)

*  Deep learning model for unified representations of search queries
and products, improving search relevance, especially for
ambiguous or long-tail queries

Model architecture

. Two-Tower Transformer Structure
. Semantic Similarity Assessment

Training & implementation

- Fine-tuned using Instacart's search impression logs, learning from
both positive and negative query-product pairs.

. Complements keyword-based and category-based retrieval
methods, particularly effective for complex or less common queries.

=\

Query —p

Query encoder

—

Product —»-|

Product encoder

—=

Query
embeddings

oO o l

Cosine
Similarity

Product
embeddings
O

6

https://www.instacart.com/company/how-its-made

/how-instacart-uses-embeddings-to-improve-sear

ch-relevance/
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https://www.instacart.com/company/how-its-made/how-instacart-uses-embeddings-to-improve-search-relevance/
https://www.instacart.com/company/how-its-made/how-instacart-uses-embeddings-to-improve-search-relevance/
https://www.instacart.com/company/how-its-made/how-instacart-uses-embeddings-to-improve-search-relevance/

Search & Recommendation | Fairness

Two-sided fairness
. Patro et al., 2020. FairRec: Two-Sided Fairness for Personalized Recommendations in Two-Sided Platforms (WWW

2020)
+ Focus on maximizing customer satisfaction often leads to unfair exposure distribution for producers (e.g.,

sellers, restaurants, content creators).

*  Over-exposure to popular producers & under-exposure to less popular ones — negatively impacts marketplace
sustainability.

* Aproducer-centric design may harm customer experience, creating a trade-off.

Fair allocation

* Maximin Share (MMS): Guarantees a minimum level of exposure for producers.
*  Envy-Free up to One Item (EF1): Ensures customers don’t feel significantly disadvantaged.

Algorithm

. Step 1: Assigns products ensuring fair exposure among producers.
+  Step 2: Allocates recommendations in a way that minimizes customer envy.

I
- Sihr, T., Biega, A.J., Zehlike, M., Gummadi, K.P. and Chakraborty, A., 2019, July. Two-sided fairness for
Also see: repeated matchings in two-sided markets: A case study of a ride-hailing platform. In Proceedings of the 25th
| ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 3082-3092). m




Search & Recommendation | Case Studies

Fairness in LinkedIn’s Recommendation Algorithms

+  Yu & Saint-Jacques. Choosing an Algorithmic Fairness Metric for an Online Marketplace: Detecting
and quantifying algorithmic bias on LinkedIn

Why fairness in marketplace recommendations?

«  Algorithms influence who gets recommended job opportunities, connections, or services.
* Biased recommendations can reduce opportunities for underrepresented groups.
*  Need for a precise fairness metric that separates algorithmic bias from human bias.

Technical highlights

* Fairness test based on marginal candidate outcomes

- Fairness metric for marketplace recommendations: equal opportunity for equally qualified
candidates

*  Separating algorithmic bias from human bias
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Dynamic Pricing

Centralized

. Platform sets the price for each request
. Platform also sets the corresponding pay for the supply
«  Typical for ridesharing platforms

Decentralized

«  Seller/service provider sets the price for the item/service offered. Platform provides pricing

guidance.

. Service provider bids for a specific demand/request, typically in a demand broadcasting matching
mechanism.

. Buyer (service requester) sets the pay for a request. Service provider decides whether to take on a
request.

. Typical for vacation rental, retail, and consulting projects
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Dynamic Pricing | Centralized (Ridesharing)

Spatiotemporal pricing

Chen, et al., 2021. Spatial-temporal pricing for ride-sourcing platform with
reinforcement learning. Transportation Research Part C: Emerging Technologies,.
Pricing decision for each hexagonal cell: (per-km rate for excess mileage
beyond a base trip distance, per-km rate for driver wage)

Objective: maximizing total profits

Agent

Global decision-maker
State info: the numbers of open requests, vacant vehicles, occupied vehicles:*
in each grid cell at time t and historical demand at time t -1

Different rider and driver elasticity functions as part of the env

Learning

PPO
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Dynamic Pricing | Centralized (Ridesharing)

Joint pricing with online matching

. Dynamic price adjustments through % movement on base price Intents Order list
«  Goal: maximize long-term cumulative returns —_— | o _e_r_l_s
: f’ : ; I Driver list
Macro-lever interaction ! : ; @ YL = s
1 - 2 e
: I =

. Price changes affect demand distribution, which in turn has impact
on dispatch outcomes, even with the same driver group and
matching policy.

Dynamic pricing decisions

) )
) eeee @
—
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Q
=
Q.

i
Ve
mEEEn

1 .
. Contextual bandits on a set of discrete price % adjustments 1 ' § | '
| 7 I g !
Long-term value : I
. Conversion probability * trip value computed from TD errors based Chen, H., Jiao, Y., Qin, Z., Tang, X., Li, H., An, B., Zhu, H. and

Ye, J., 2019, November. InBEDE: Integrating contextual bandit
on SUpply values with TD learning for joint pricing and dispatch of ride-hailing

— platforms. In 2019 IEEE International Conference on Data
[ ] Mining (ICDM) (pp. 61-70). IEEE.
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Dynamic Pricing | Decentralized (1)

Platforms provides pricing guidance

. Airbnb, Amazon, UpWork

«  Service providers (sellers) have “preset” services and set their own price or hourly rate
. Platform guidance helps both sellers and platform.

Results for New York, NY, USA

Room Type ~ Booking Type Price Range ~ More Filters
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Dynamic Pricing | Decentralized (1)

Key difference from ridesharing
. Real-timeness
Time sensitivity

- Pricing adjustments are more gradual, considering longer-term factors such as upcoming events or seasonal trends.
- Ridesharing: Pricing is highly sensitive to real-time conditions

Supply elasticity

*  The supply of available properties is relatively fixed in the short term.
* Ridesharing: Driver availability can change quickly in response to surge pricing.

Customer decision-making

. Guests typically plan their stays in advance
* Ridesharing: Consumers often make spontaneous decisions, with price playing a critical role in immediate choice.

=N\ /N




Dynamic Pricing | Decentralized (2)

Service providers / sellers bid for a demand / request

Rideshare in early days
Contractual projects. Angi, UpWork (project-based fixed price)
Similar to the previous setting but with on-demand request-specific pricing

. Interested sellers bid Customer selects one
Customer publishes . .
a oroiect / ride > with quotes/ETA for > seller to complete the
Pro) ' the project/ride. deal.
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Dynamic Pricing | Decentralized (3)

Buyer sets the pay for a request

. Some rideshare platforms adopt this mechanism - perceivably more fair.

] Bl L
- Riders set their own price for a ride. |) InDrIVe

- Drivers can accept, decline, or counteroffer with their own bid.
- Riders then choose the driver based on price, rating, and estimated arrival time.
*  Freelancing (UpWork): clients can set their budgets, and freelancers submit their proposals to
specific projects.

pick
] your driver




Growth & Incentives

Significance

+  The value of the platform for either side (supply/seller, demand/buyers) depends on the availability

of the other side.
«  The size of both user groups have to be in “balance” for the marketplace to be efficient.

Target populations

«  Buyers (demand-side): discounts on price
«  Sellers (supply-side): bonus in pay
. Other non-monetary incentives: priority in matching or recommendations

When to distribute

. Real-time: triggered by real-time events (e.g., demand intents, cancellation)
. Batch: decisions are more about the precise target group, often for life-cycle management on the
platform
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Growth & Incentives | Supply-side

Real-time incentives

. More often seen on ridesharing or food delivery platforms
«  Vehicle repositioning

Batch incentives

. Ridesharing: target-based driver incentives (ride streaks)

. Food delivery: "Complete 20 deliveries in a week and earn a $100 bonus."
. Earning guarantees for new participants

. Seasonal listing promotions in vacation rentals

Optimization

. Decisions: incentive structure and amount, target group, triggering time
. Learning algorithm for optimizing policy
. Causal inference for estimating uplift effects
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Growth & Incentives | Supply-side

Target-based incentives for drivers (ride streaks)

. Complete X rides today to get $Y in bonus.
. Can be tiered: complete X+5 rides today to get an additional $Z in bonus
«  Typically targeted in a batch, planned manner: e.g., distribute today, take effect tomorrow

Goal
« Toincentivize drivers to stay longer with the platform -> more driver hours -> more supply
Problems / considerations

. Cost: bonus amount, probability of getting the bonus (hitting the target)
. Returns: uplift in driver hours on the same day, and longer-term effects
— Long-term effects can be negative: driver keeps getting targets that are too hard to hit
. RL on incentive policies: [Shang, et al., 2019]
«  Causal inference on uplift effects: [Huang, et al., 2022, Shang, et al., 2021]
. Effects on supply behavior: [Liu, et al., 20234, Liu, et al., 2023b]
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Growth & Incentives | Demand-side

Real-time incentives

. Intent-based discounts
. Cancellation-triggered discounts
. Bundling upon check-out

Batch incentives

«  Customer life-cycle management
— First-purchase discounts
- Tiered loyalty program

«  Streak-based rewards
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[Wiu et al., 2022]
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Growth & Incentives | Demand-side

Intent-based discounts (ridesharing) e

. Ride intent: the action of viewing a quote for a particular ODT \
(origin-destination-time) combination. Not an actual order yet but a strong
signal of potential demand.

«  Typically ODT -specific and real-time

Purpose
L
(A [ \ s
- To shape demand (spatiotemporal) distribution to align better with future supply 2 S !\ ) /_/77'{
distribution to maximize long-term (daily) returns R S it
Problems / approaches s1
. Estimating trip value: marginal demand value via supply values (TD errors) s2
. Estimating uplift in probability of order conversion: causal inference d
\_//
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Examples of Target Policies in Ridesharing
o Order dispatching o Subsidizing
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Example: Order Dispatching

«  Online experiments typically last for two weeks
« 30 minutes/1 hour as one time unit, randomized over time
. Data forms a time series
«  Observations:
- Outcome: drivers’ income or no. of completed orders
- Demand: no. of call orders
- Supply: no. of idle drivers
«  Treatment (binary):
—  New order dispatching policy B
- order dispatching policy
. Target: Average treatment effect (ATE) = difference in average outcome between the new and policy




Example: Subsidizing

. Randomized over population (e.g., passengers)
. Panel data: containing data from multiple individuals, each forms a time series
«  Observations:
- Individual-level outcome: passenger satisfaction
Individual-level covariate: passenger’s demographics and historical service usage data
—  City-level demand: no. of call orders
—  City-level supply: no. of idle drivers
«  Treatment (binary):
—  New order subsidizing policy B
— order subsidizing policy
. Target: Average treatment effect (ATE) = difference in average outcome between the new and policy




Overview

Challenges in A/B testing Policy Evaluation

. Direct method

. Importance sampling

. Double robust method

. Model-based method

. Uncertainty quantification

. Interference effects over time/space
. Partial observability

. Early termination

«  Small sample size

«  Weak signal

«  Solutions to these challenges

Design of online experiments

« Designs and trade-offs
« A selective review of optimal designs
«  Case study in ridesharing




Overview

Challenges in A/B testing

. Interference effects over time/space
. Partial observability

. Early termination

«  Small sample size

«  Weak signal

«  Solutions to these challenges




Challenge I: Interference Effects

Time series experiments: Carryover (delayed) effects over time

. Past treatments influence future observations/outcomes (Li, et al., 2024a, Figure 2)
. Under the alternating-time or switchback design

many conventional A/B testing/causal inference methods would fail (Shi et al., 2023a)

Multi-unit experiments: Spillover effects across units

. Each unit’'s outcome/observation depends on both its own treatment and treatments from other units

- @.@




Challenge I: Carryover Effects over Time




Adopting the Closest Driver Policy




Some Time Later...







Consider a Different Policy




Able to Match All Orders




Challenge I: Carryover Effects over Time (Cont’d)

I-SE past treatments — distribution of drivers — future outcomes
7



Challenge I: Spillover Effects over Space

I-S E policy in one location — drivers from neighbouring location
— outcomes in neighbouring location




Challenge Il: Partial Observability

© Fully Observable o Partially Observable
Markovian Environments non-Markovian Environments
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Challenge Il: Partial Observability
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Other Challenges

Challenge lll: The need for early termination

. Each experiment takes a considerable time
«  Early termination to save time and budget

Challenge IV: Small sample size

. Online experiments last at most 2 weeks (Xu et al., 2018)
« Increasing the variability of the treatment effect estimator

Challenge V: Weak signal

. Size of treatment effects ranges from 0.5% — 2% (Tang et al., 2019)
. Making it challenging to distinguish between new and old policies




Addressing Carryover Effects over Time

RL framework for A/B testing

. Employ Markov decision processes (MDPs) to model experimental data (Glynn et al., 2020, Farias et al., 2022, Shi et al., 2023a)
. Capture carryover effects over time using dynamic system transitions

. Past policies impact future outcomes indirectly through future states
. Future states serve as mediators between past policies and future outcomes




Addressing Carryover Effects (Cont'd)

RL framework for A/B testing

Most existing solutions require the independence assumption (see e.g., Larsen et al., 2024; Quin et al., 2024)

failing to detect any carryover effect (see the numerical examples in Shi et al., 2023a).
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Addressing Spillover Effects, Partial Observability
& Early Stopping

(MA)RL framework for A/B testing

. Employ multi-agent models to capture spillover effects across units by the interactions among agents (Shi et al., 2023b)
. Employ partially observable MDPs (POMDPs) to capture partial observability (Liang and Recht, 2023; Sun et al., 2024)

Sequential monitoring

- Avoid p-value peeking
. Employ sequential analysis (e.g., alpha-spending) for A/B testing (Jennison et al., 2000)
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Addressing Small Samples & Weak Signals

Design of experiments

Identify optimal treatment allocation strategy in online experiments that minimizes MSE of the ATE estimator
t=1

O—O0—0O——0

AorB AorB AorB AorB

Data integration

Combine experimental data (A/B) with historical data (A/A) to improve ATE estimation (Li et al., 2023b, 2024b)
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Overview

Policy Evaluation

. Direct method

. Importance sampling

. Double robust method

. Model-based method

. Uncertainty quantification




Off-policy Evaluation (OPE)

Objective: Evaluate the impact of a target policy using We will cover three settings
historical data generated from a different behavior policy

Settings carryover effects spillover effects

w Contextual bandits X X
Causal

" v X
5 MARL o v




OPE in Contextual Bandits

- Awidely-used model in medicine and technological industries
. At each time t, the agent
—  Observes a context
—  Select an action (old policy A or new policy B)
- Receives an outcome
¢ Objective: Given a sequence of i.i.d. context-action-outcome triplets generated by a behavior policy,

b(A|context) = Pr(action=A|context) = 1 - Pr(action=B|context) = 1 - b(B|context)

we aim to estimate the ATE: difference in expected outcome between A and B
+  Common estimators (Dudik et al., 2014)
- Direct estimator
—  Importance sampling (IS) estimator
—  Doubly robust (DR) estimator



https://arxiv.org/search/cs?searchtype=author&query=Dudik,+M

Direct Estimator

- Letr denote the outcome regression (or reward) function
r(A, context) = E(outcome|action=A, context), r(B, context) = E(outcome|action=B, context)
*  ATE can be represented by
E[r(B, context) - r(A, context)]
+ The direct estimator:
—  Estimates r using supervised learning

— Approximates the expectation E using the empirical context distribution
—  Plugs these estimators into the ATE formula




Importance Sampling Estimator

«  The IS estimator
—  Estimates the behavior policy b using supervised learning
— Reweights each outcome by the IS ratio that adjusts the distribution shift between the target policy and b

ratio(action|A, context) = I(action = A)/b(A|context)
ratio(action|B, context) = I(action = B)/b(B|context)

— Averages these reweighted outcomes to estimate the ATE
* Extensions
—  When b is small for certain action-context pairs, IS suffers from a large variance
—  Self-normalized IS: normalize all IS ratios prior to reweighting
—  Truncated IS: truncate b from below prior to constructing IS ratios
- Biasl/variance trade-off
—  Direct estimator suffers from some bias, as the outcome regression function r needs to be estimated from data
- IS is unbiased when b is known as in randomized studies, but suffers from a large variance




Doubly Robust Estimator

+ Direct estimator estimates the outcome regression function r to learn ATE
- Its consistency requires consistent estimation of r
* IS estimates the behavior policy b to learn ATE
— lts consistency requires consistent estimation of b
*  Doubly robust estimator estimates both r and b
— lts consistency requires consistent estimator of either r or b, but not necessarily both
— It constructs the following estimating functions

[r(B, context) - r(A, context)] + [ratio(action|B, context)- ratio(action|A, context)] (outcome - r(action, context))

—  The first term = estimating function in the direct estimator
—  The second term = augmentation term to debias the bias of the direct estimator
»  Offer additional robustness against misspecification of r
—  Averages these estimating function over the context-action-outcome triplets to estimate ATE
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Fact 1: Double Robusthess

* Recall the estimating function

[r(B, context) - r(A, context)] + [ratio(action|B, context)- ratio(action|A, context)] (outcome - r(action, context))

*  Whenris correctly specified:
—  The second augmentation term is of mean zero
— DR =direct estimator, which becomes consistent
*  When b is correctly specified:
—  The estimating equation has the same expected value to that of IS
— DR =18 estimator, which becomes consistent




Fact 2: Efficiency

* Recall the estimating function

[r(B, context) - r(A, context)] + [ratio(action|B, context)- ratio(action|A, context)] (outcome - r(action, context))

*  When b is correctly specified:
—  The estimating function is unbiased to the oracle ATE
—  DR’s MSE becomes proportional to the variance of the estimating function
* Additionally, when r is correctly specified:
—  The estimating function achieves the minimal variance
— Agood working model for r improves DR’s estimation efficiency
—  The DR estimator achieves the efficiency bound (e.g., smallest MSE among a wide class of regular estimators, Tsiatis, 2006)
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Fact 3: Efficiency

*  When b is estimated from data and the model is correctly specified:
MSE(IS with an estimated b) <= MSE(IS with the oracle b)

+ Estimating b yields a more efficient estimator, even if we know the oracle b (Tsiatis, 2006)
*  The same holds true in RL settings (Hanna et al., 2019, 2021)

—  MSE of IS can be reduced through history-dependent IS estimation

—  The longer the history-length, the smaller the variance




Fact 4: Asymptotic Normality

* DR converges at a parametric rate (e.g., root-n rate) and remains asymptotically normal even when both the estimated r
and b converge slower than the parametric rate
—  More specifically, it only requires both nuisance functions to converge faster than the fourth-root rate
* This enables us to apply modern deep/machine learning to estimate both r and b, leading to the double machine learning
(DML) estimator (Chernozhukov et al., 2018)
—  Cross-fitting can be employed for valid statistical inference (e.g., hypothesis testing, confidence interval construction)
. Extensions of DML to RL: Double reinforcement learning (DRL, Kallus and Uehara, 2022, Liao et al., 2022)




OPE in Reinforcement Learning

*  Focus on the MDP model (assuming full observability)
*  Objective: Given an offline data consisting of a set of state-action-reward-next-state tuples generated by a behavior policy

b(A|state) = Pr(action=A|state) = 1 - Pr(action=B|state) = 1 - b(B|state)

We aim to estimate the ATE: the difference in the expected return between the two policies A and B
return = reward at time 1 + y reward at time 2 + ... + y*t reward at time t + ...

where y denotes the discount factor (allowed to be 1).

+  Common estimators (see Uehara et al., 2022 for a recent review):
—  Direct estimator
— IS estimator
— DR estimator
—  Model-based estimator




Direct Estimator

. LetV(A, state) and V(B, state) denote value functions (expected return starting from a given state) under the two policies.
+ ATE can be represented by

E[V(B, initial state) - V(A, initial state)]

*  The direct estimator:
—  Estimates V using RL
»  Fitted value or Q-evaluation (Le et al., 2019)
»  Least square temporal difference learning (Sutton et al., 2008; Shi et al., 2022)
»  RKHS-based estimator (Liao et al., 2021)
—  Approximates the expectation E using the empirical initial state distribution
—  Plugs these estimators into the ATE formula




Importance Sampling Estimator

Sequential importance sampling (SIS, Zhang et al., 2013; Thomas et al., 2015)

- Estimates the behavior policy b using supervised learning
+ Ateach time t, reweights the reward using the product of IS ratios to address the distributional shift from the initial time to t

ratio(action at time 1|state at time 1) X ... X ratio(action at time t|state at time t)
*  Averages these reweighted rewards to estimate the ATE
«  Suffers from curse of horizon (Liu et al., 2018): Variance of the product of ratios grows exponentially fast wrt t
+  Extension: doubly robust estimator (Jiang and Li, 2016; Thomas and Brunskill, 2016)

Marginalized importance sampling (MIS, Liu et al., 2018; Xie et al., 2019)

*  Employ the structure of MDP (e.g., Markov assumption) to break the curse of horizon
* Ateach time t, reweights the reward using the marginalized IS ratio of both the state and action at time t

ratio(state at time t, action at time t)

computed via e.g., minimax learning (Uehara et al., 2020), RKHS (Liao et al., 2022) //I‘
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Double Reinforcement Learning

. Double RL extends double ML (Chernozhukov et al., 2018) from bandits to RL (Kallus and Uehara, 2022; Liao et al., 2022)
»  Similar to DR, the estimator can be represented by

Direct Estimator + Augmentation Term

*  Augmentation term relies on the MIS ratio and is to
—  debias the bias of the direct estimator
—  offer protection against model misspecification of the Q- or value function
* Fact 1: DRL is doubly robust, e.g., consistent when either the value function or MIS ratio is correctly specified
* Fact 2: DRL achieves the efficiency bound in MDPs when both nuisance functions are correctly specified
*  Fact 3: DRL is asymptotically normal when both converge faster than the fourth-root n rate
—  which facilitates hypothesis testing and calculation of p-values
+ Fact 4: In addition to DRL, there exist efficient direct or MIS estimators as well
—  Direct estimators based on linear function approximation (Shi et al., 2022, 2023a) or RKHS (Liao et al., 2021)
- MIS estimators based on linear function approximation = double RL estimator = direct estimator

/N



Deeply-debiased OPE (Shi et al., 2021)

P Direct Method

Double RL

_ Deeply-debiased
Estimator

Variance
Bias
Requirement of value estimator

»  Constructed based on high-order influence functions (Robins et al., 2008, 2017)

*  Ensures bias decays to zero much faster than standard deviation to produce valid p-values //IA
»  Allows nuisance functions to converge at arbitrary rates m




Model-based Estimator

. Direct, IS and DR are all model-free estimators
* Model-based estimator estimates the MDP model (reward & state transition function) from the data

E (reward|action, state) & P (next state|action, state)

and employs dynamic programming (DP), Monte Carlo (MC) method, or temporal difference (TD) learning for
policy evaluation; see Sutton and Barto (2018) for a review of these methods

DP : v(s;) < Ez[ree1 + Av(sit1)] MC : v(s;) < v(s:) + (R, — v(sy)) TD : v(s;) < v(s;) 4+ n(rie1 + Av(si41) — v(s,))
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Uncertainty Quantification: A Selective Review

Concentration
inequalities

Normal
approximation

Bootstrap

Empirical likelihood

Model-based

Hanna et al. (2017)

Direct method

Feng et al. (2020)

Luckett et al. (2020)
Liao et al. (2021)
Shi et al. (2022)

Hao et al. (2021)

Importance sampling

Thomas et al. (2015)

Wang et al. (2023)

Dai et al. (2020)

Double robust

Thomas et al. (2016)
Jiang and Li (2016)
Zhou et al. (2023)

Shi et al. (2021)
Liao et al. (2022)
Kallus and Uehara (2022)

Thomas et al. (2016)
Hanna et al. (2017)




Extensions

Policy evaluation under weak carryover effects

. Farias et al. (2022) proposed a difference-in-Q (DQ) estimator, a direct estimator under the assumption of weak carryover effect

- When compared against other direct estimators (e.g., Shi et al., 2023a):
- DQ is an on-policy estimator that calculates the difference in Q-estimators under the behavior policy
- The direct estimator by Shi et al. (2023a) is off-policy which computes Q-estimators under the target policy
- On-policy estimator has smaller variance at the cost of a larger bias whose order of magnitude depends on the size of carryover effect

Policy evaluation in POMDPs

- Model-based methods based on linear state-space models (Liang and Recht, 2023; Sun et al., 2024)
*  Model-free methods using future-dependent value functions (Uehara et al., 2023)

Policy evaluation in MARLs

+ Adapt mean-field approximation designed for policy optimization (Yang et al., 2018) to OPE (Shi et al., 2023b)
*  Employ permutation-invariant or graph neural networks to model spillover effects (Leung and Loupos, 2022; Dai et al., 2024)
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Overview

Design of online experiments

«  Designs and trade-offs
« A selective review of optimal designs
«  Case study in ridesharing




Recap: Order Dispatching

«  Online experiments typically last for two weeks
+ 30 minutes/1 hour as one time unit, randomized over time
- Data forms a time series
«  Observations:
- Outcome: drivers’ income or no. of completed orders
- Demand: no. of call orders
- Supply: no. of idle drivers
«  Treatment (binary):
—  New order dispatching policy B
- order dispatching policy
. Target: Average treatment effect (ATE) = difference in average outcome between the new and policy
- Objective: identify optimal treatment allocation strategy in online experiments that minimizes MSE of the ATE estimator

AorB AorB AorB AorB //
/A



Alternating Day (AD)

Day1 @—@—@ >e000 »

Day 13 ®—v®—v® >ece >
Day 14 >eee >

@0 @O

LSt




Alternating Time (AT)
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AD v.s. AT

Pros of AD Pros of AT

Within each day, it is on-policy and avoids
distributional shift, as opposed to off-
policy designs (e.g., AT)

Widely employed in ridesharing companies
such as Lyft and Uber (Chamandy, 2016;
Luo et al., 2024)

«  On-policy designs are proven optimal in «  According to my industrial collaborator, AT
fully observable Markovian environments yields less variable ATE estimators than
(Li et al., 2023) AD

Q: Why can off-policy designs, such as AT, be more efficient than AD?

A: Due to partial observability ...




A Bandit Example

+ A bandit setting without carryover effects
outcome = a l(action = A) + b I(action =B) + e

« ATE equals b - a and can be estimated by the sample mean estimator
— average the outcome under the two policies and take the difference
. The resulting estimator’'s MSE under AD and AT is proportional to

.1 .1
lim —Var(ej+ex+e3+eg+---+e) and lim —Var(ej—er+e3—es+- - -—ey)
t—oo t t—oo t

which depends on the residual correlation:
. With uncorrelated residuals, both designs yield same MSEs;
«  With positively correlated residuals:
- AD assigns the same treatment within each day, under which ATE estimator’s variance inflates due to accumulation of residuals
- AT alternates treatments for adjacent observations, effectively negating these residuals, leading to more efficient estimation
With negatively correlated residuals, AD generally outperforms AT
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When Can AT Be More Efficient than AD

Key condition: Residuals are positively correlated

. Often satisfied in practice
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Rule out full observability (Markovanity) under which residuals are uncorrelated
Can only be met under partial observability
Suggest partial observability is more realistic, aligning with my collaborator’s finding




Designs and Trade-offs

. Previous analysis excludes carryover effects

. Trade-off between on-policy and off-policy designs (Wen et al., 2024; Xiong et al., 2024)
- On-policy designs (e.g., AD or Li et al. 2023) are favored in settings with large carryover effects to avoid distributional shifts
- Off-policy designs (e.g., AT or switchback) are preferred with positively correlated residuals for variance reduction

Strong On-policy

Carryover Effect Off-policy

Positive

Correlation

Otherwise | On-policy




Generalizations to Multi-unit Experiments

- Global design: Apply same policy to all units at each time and switch policies across time
* Individual design: Apply i.i.d. policies to all units at each time
*  Cluster-randomized design: Group units into clusters; apply i.i.d. policies to all clusters at each time

(a) Global Design (b) Individual Design (c) Cluster-randomized Design

- Trade-offs among the three designs (Ugander et al., 2013; Leung, 2021; Viviano et al., 2023; Yang et al., 2024)

- Global designs are on-policy and are favored in settings with large spillover effects to avoid distributional shifts

- Individual designs are off-policy are preferred with positively correlated residuals across units for variance reduction
- Cluster-randomized designs strike a balance among interference and correlation, often yielding the best performance
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Optimal Designs in Time Series Experiments

MDP Design (Li et al., 2023) — Code available on GitHub

. Proven optimal in Markovian environments

. Doubly robust method: Employ DR for ATE estimation

«  On-policy: Similar to AD, it assigns the same policy within each day and switch policies across days

. Neyman-allocation: No. of days assigned to treatment and proportional to the variance of daily return

(a) NMDP

(b) TMDP

(c) MDP

Figure 1: Data structure of NMDP, TMDP, and MDP. (a) In the NMDP, the reward and future observations are
determined by all past observation-action pairs. (b) In the TMDP, the reward and future observations depend
solely on the current observation-action pairs. (c) In the MDP, the reward and future observations also rely on
the current observation-action pairs, with the same-colored slashes indicating identical conditional distributions.



https://github.com/tingstat/MDP_design

Optimal Designs in Time Series Experiments

Switchback Design (Bojinov et al., 2023)

«  Minimax optimal among the class of regular switchback designs
. Sequential importance sampling for ATE estimation — potentially suffering from curse of horizon

. Off-policy: Similar to AT, each policy is implemented for a specific duration and then switched to the other
« Randomization frequency: The optimal duration aligns with the order of carryover effect

wie=(1,1,1,1) wie=(1,1,1,1)
wia=(1,1,1,0) wi2=(1,1,1,0)
wia=(1,1,0,1) wi=(1,1,0,1)
wi.4=(1,1,0,0) wi4=(1,1,0,0)

wia=(1,0,1,1) wi2=(1,0,1,1)
wi24=(1,0,1,0) wi2=(1,0,1,0)
wi4=(1,0,0,1) wi=(1,0,0,1)
W1:4=(1,0,0,0) W1:4=(1,0,0,0)
wi.=(0,1,1,1) wi=(0,1,1,1)
wi1.4=(0,1,1,0) wi14=(0,1,1,0)
wi14=(0,1,0,1) wi1.4=(0,1,0,1)
w1.4=(0,1,0,0) wi:2=(0,1,0,0)
W1z4=(0,0,1,1) W1:4=(0,0,1,l)
wi1.2=(0,0,1,0) w1.4=(0,0,1,0)
w1.4=(0,0,0,1) wi.4=(0,0,0,1)

w1:2=(0,0,0,0) wi:2=(0,0,0,0)
Figure 2  Two designs. The blue lines stand for the possible treatment assignments that a design could

administer. Left: regular switchback experiment (Example 3); Right: irregular switchback experiment (Example 4). //[ L3




Optimal Designs in Time Series Experiments

ARMA Design (Sun et al., 2024) — Code on GitHub

. Proven optimal in partially observable environments

. Model-based method: Employ classical ARMA model
— Autoregressive model for observations
- Moving average model for residuals
— Control component to incorporate policies : ..
= allow carryover effects & partial observability N L L L L L
«  Theory: Establish asymptotic MSEs of ATE estimators
=+ compare different designs
«  Optimization: Develop an RL algorithm
= compute the optimal design

1 MA@) | partial
' part observability

AR(p) __ carryover
part effect :
t '
|}

control part



https://github.com/datake/ARMADesign

Case Study: Order Dispatching (Code)

Experiment I: A Synthetic Dispatch Simulator Experiment ll: City-level Real-data-based Simulator
. Ridesharing environment over 9 x 9 spatial grid (code) -  City divided into 85 hexagonal regions (Tang et al., 2019)
. New policy: MDP order dispatch policy (Xu et al., 2018) «  Orders: Generated according to the dataset
. Old policy: distance-based policy . Drivers: Behavior learned the dataset
20-
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https://github.com/callmespring/MDPOD

Case Study: Order Dispatching (Cont’d)

Experiment lll: Real-data-based Analyses

. Data from two different cities

City 1

. Bootstrap-based simulation
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LLMs in Two-sided Marketplaces

What are LLMs?

Transformer-based language models trained on vast amounts of text data.
Capable of understanding and generating human-like text.
Amplified by advancement in speech recognition and voice synthesis

Why LLMs in marketplaces?

Enhance user experience through natural language interactions.

Improve decision-making (e.g., pricing and incentives) by analyzing unstructured data (e.qg.,
reviews, chat logs).

Automate customer support, search/recommendations, and more.
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LLM-based Agents

Model

. Similar to RL agents but with natural language as communication vehicle

Examples

. Customer support

. Legal assistant

. Shopping guide

«  Sales marketing ASk:ufus
(]

. Restaurant phone agent
. Coding

Voice agents

«  Speech recognition (ASR) \§>,|“|I|" ) @ . 3
. Cognitive layer (LLM) [_ $ w

«  Voice synthesis (TTS) *eeet

Automatic Speech Natural Language Text to

. Recognition Processing Speech
L https://developer.nvidia.com/blog/how-to-deploy-real-time-text-to-speech-applications-on-gpus-
. using-tensorrt/




Applications of LLMs in Two-sided
Marketplaces

Customer support

Automate handling of common inquiries (e.g., lost and found, complaints).
*  Reduce response times and improve user satisfaction.

Personalized recommendation

Use LLMs to analyze user preferences and suggest relevant products or services.
+  Example: Recommending restaurants based on past orders and reviews.

Dynamic pricing and incentives

Analyze unstructured data (e.g., social media, reviews) to adjust pricing strategies.
Generate personalized incentives for users (e.g., discounts, promotions).

Fraud detection

+ Use LLMs to detect fraudulent activities by analyzing text data (e.g., fake reviews,
suspicious messages).

=\




Case Studies

Customer support assistants

Lyft News

Lyft and Anthropic team up to redefine customer-

obsessed Al

Feb 6, 2025

820 -

s Lytt Support

Toosy 820 A
HiIm your Lyft Al assistant | can
help with most support issues.
Select an option below or describe
your issue 1o get startes. Il can't
Fesolve i, 1l connect you with an

@

Safetyissue | Accountor app Issue
issue with my pay | Ride-related fssue
Rental vehicla ssue | Lost and found

What are the requirements
to drive with Lyttinmy

| @ Crevening yoursccoun:

820 -

P Lyft Support

Issue with my pay | Ride-related
Rental vehicle ssue  Lost and found

What are the requirements
o drive with Lyftin my.
area?

To drive with Lyt in your area (San
Francisco, CA), you'll need to meet
@ e loving requirements

@ 8o atiesst 25 years oid

@ Have a vall Caifornia drver's
ticense

@  Have s Calforia icense piate
on your vehice

@ Provide personal vehicie
insurance issued in Calfornia
with your name on the policy

® Complete a Calforna veticio
inspection ata lcensed
facity

820 -
~ Lyt Support

), yout neea o meet
@ e otowing requirements:

@ Beatieast 25 years old

Have a valid Calfornia driver’s
ticense

®

Have a Calfornia license plate.
on your veicle

Provide personal venicle.
insurance issued in Calforia
with your name on the policy
® Complete.s Califoria vehicle
inspection at a icensed!
faciity
@ Docstsresove yourissue?
Yes, end chat
m clad | could help resolve this
Issue for you. Please reach out

againif you need more help.

@ iechatisnonciosea

Above images are examples illustrating the use of Lyft's customer care Al assistant

Discovery in search

. https://tech.instacart.com/supercharging-discovery-in-

search-with-llms-556¢585d4720

. Inspirational and discovery-driven content

€ Q frozen vegetables

5399 $399
Spi (i Vegetable Spe i
Fajita Blend Blend
120z 2oz

5499
PuraVida Fire Roasted Mefissa's Spicy Soybean
Primavera Mistura Edamarme In Shell

0oz Toz

Figure A

€ Q frozenvegetablos

fSotv  Ditay v  SnapEligible  Brands v

3t About 087 besch 8oz cont

Healthful meal prep

5220 260/
GroonVallay Pintoeans
Organic GraatNort. $015/0
50z

Healthy eating habits
E\
&
539 400
Earthbound Farm Buy 2, get 26% off

Organic SrapPeas..  Taylor Farms Smoky

Sea aligible ftems.

FigureB

5399
Sprouts Orgaric
Buigur & Rod Quin

@

sga0
Toyor Farms Good
Times Vegetadle T.

Example of how we inspire users with new ideas around healthy eating habits for the search query 'frozen vegetables': Figure
A shows highly relevant results that directly match the user's intent. Figure B presents inspirational products like grains and
beans that pair well with frozen vegetables. These products are presented as carousels with clearly explained titles,
_ ighlighti y i like “Healthful meal prep” to encourage creative cooking. Similarly, we also offer

ptions like fresh salad kits, and vegetable trays. These products are presented as a carousel titled
- 'Healthy Eating Habits, encouraging users to explore diverse and nutritious ways to incorporate vegetables into their daily
L]

meals



https://tech.instacart.com/supercharging-discovery-in-search-with-llms-556c585d4720
https://tech.instacart.com/supercharging-discovery-in-search-with-llms-556c585d4720

Challenges & Future Directions

Challenges

. Accuracy in agent response: hallucination, logical reasoning
- Bias and fairness: e.g., avoid biased recommendations or responses
. Scalability and compute: handling large volumes of real-time interactions

Future directions

. Multimodal agents: combining text, voice, images
. Real-time adaptation: agents that adapt to changing marketplace dynamics, continual learning
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Live Demo

Food ordering from restaurant foreva.ai [Qin & Zhou, AAMAS 2025]
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Overview

Why simulation?

Test policies (e.g., pricing, matching) without real-world risks.
Understand marketplace dynamics under different “what-if” scenarios.

Types of simulations

Macroscopic: High-level modeling of marketplace dynamics.
Microscopic: Detailed modeling of individual agents (e.g., drivers, riders) - agent-based modeling.




Modeling

Macroscopic modeling

To understand impact of interventions in supply and demand on marketplace efficiency

Graphic equilibrium metrics (GEM)

[Zhou et al., 2021] generalized asymmetric Wasserstein distance between supply and demand
Dispatch effects accounted for through solving an optimal transport problem

Dual-perspective framework for two-sided marketplaces

from a random rider (buyer) or driver (seller) perspective

[Chin & Qin, 2023] Supply-demand gap index derived from GEM as expected market condition J
Shift in the dual-view indices offer insights on changes in marketplace efficiency.

i

2
=

Supply-centric index

supply view A A supply,\(iew

*s_ control

Demand-centric index

demand view




Modeling

Microscopic modeling M i d Evalugtion N

+  Dynamics and growth of marketplace through modeling -
individual agents ierosimaton

Platforms’ Revenue and
B Market Share
\
¢ —>
X

«  Modeling the Rise and Fall of Two-Sided Markets: Ghasemi L envenment e
and Kucharski (2024)
. Uses MaaSSim . "
Traveller/Driver Agents' Learning
Agent participation model ercaga iy | /7 Samped ey [ NewSan o
1.0 Rositive Experience
. Choice models over transportation modes and participating '_ T' Warkeng
(Compet|ng) plathI’mS I Word-of-Mouth ik 3 TEq 4J e Word-of-Mouth
. Endogenous factors: driver income, rider waiting time, price i Y
. Exogenous factors: marketing, word-of-mouth L S a=0%a=1__ gy Negaive [ Pears Opinon
«  S-shaped learning and adaptation (faster at neutral util)
Campaign
Evaluating platform policies Platform Learning

Strategy Update: Trip fare, Commission rate, Discounts,
Incentives, Marketing, etc.

Day-to-Day Process

= /N




Modeling

Generative World Model

. Neural network-based foundation model that creates realistic simulations of market dynamics
. Enables study of complex interactions between participants

MarS

- [Lietal, 2025] MarS: a Financial Market Simulation Engine Powered by Generative Foundation Model.

« Afinancial market simulation engine powered by a Large Market Model (LMM)

. Generating order-level data that reflects actual market behavior, facilitating the testing and
development of trading strategies in a controlled environment

«  https://arxiv.org/pdf/2409.07486
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Modeling

Generative Adversarial Imitation Learning

. Simulate driver behavior for target-based driver incentives
. Explicitly models confounder policy to simulate competitor effects

Generators

. Platform actions, driver and competitor actions

real-world environment virtual environment with hidden policy
hidden variable hidden J)Ollcy
S
/' ( ‘ o
PP
/7 > ‘ o(
- %
S EN %
w4 =
recommendation / D\ / / recommendation 220N
: h— o= -0\ S )
"!" response , \T/ response. /" id \\y
drivers platform ‘/ virtual driver policy =" platform policy
A e et
rewards for training - -
= =
of oo e ———
reald-::) = ~— generated da!a}

compatible discriminator —-

[Shang et al., 2019, 2021]

Multi-agent Generator
shared weights
1 i
I I
Discriminator for state-action pair Discriminator for state-action pair

(sa,a4) of Mg (sg,ag) of Tpe

Compatible Discriminator

/X



Tools & Frameworks | Practical Considerations

Complexity

* Assess the intricacy of interactions between participants and choose a tool that can capture these dynamics effectively.
Scalability

*  Ensure the framework can handle the scale of your simulation, especially if modeling large marketplaces.
Programming Expertise

»  Select a tool that aligns with your team's programming skills to facilitate efficient model development.
Specificity to domain

While general-purpose ABM tools offer flexibility, domain-specific simulators like MaaSSim can provide tailored features for
particular types of marketplaces.
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o
eRepast4Py

Tools & Frameworks

Repast

- Asuite of advanced ABM tools that support the creation of agent-based simulations in various domains.
*  Open source
*  https://repast.qgithub.io/repast4py.site/index.html

Variations

* Repast Simphony: Designed for standard modeling tasks, providing a rich set of features for building and analyzing
simulations.
* Repast HPC: Tailored for high-performance computing scenarios, enabling the simulation of large-scale models.

Use case

. Suitable for simulating complex systems, including two-sided marketplaces, where understanding the interactions between
different agent types is crucial.

=N\ /N



https://repast.github.io/repast4py.site/index.html

Tools & Frameworks

Simulating rideshare dynamics

- Vehicle capacity: ride-hailing vs ride-pooling

. pre-/post-matching rider cancellation behavior

. Driver acceptance/rejection cancellation behavior
. Rider and driver participations

[Yao and Bekhor, 2021]
. “Ridesharing”: hitch service
[Chaudhari et al., 2020]
. OpenAl Gym-compatible
AMoDeus [Ruch et al., 2018], MATsim [Axhausen et al., 2016]

. Java-based simulation
. GUI and visualization tools
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Tools & Frameworks

MaaSSim (Mobility as a Service Simulator)

«  MaaSSim [Kucharski & Cats, 2020] is an agent-based simulator
specifically designed to model mobility services.

. Used in Modelling the Rise and Fall of Two-Sided Mobility Markets
with Microsimulation discussed previously

Key features

. It allows for the simulation of day-to-day dynamics in two-sided
mobility markets, capturing the decision-making processes of both
service providers and consumers.

Use cases

- Analyzing market entry strategies
. Understanding the co-evolutionary behavior of agents in the mobility
domain

IS ACCEPTED
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ENDS SHIFT

ENDS DAY

REPOSITION DECISION £ driver repos

L

Driver Platform Traveller
STARTS A DAY — STARTS A DAY | |~ STARTS A DAY
g =
OPT - OUT DECISION £ STRATEGY OPT - OUT DECISION =
£ driver out > < fleet size and pricing £_trav_out ?
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ENQUEUES TO PLATFORM ’ || ENQUEUED NEW REQUESTS A RIDE
— IDLE DRIVER| | REQUEST
= 4 A o
RECEIVES REQUEST 2l & v v RECEIVES OFFER al |
v al 18 MATCHING S 5l |¢
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https://arxiv.org/abs/2208.02496
https://arxiv.org/abs/2208.02496

Practical Challenges in Simulation

Scalability
- Simulating large-scale marketplaces with thousands of agents.

Realism / Fidelity
«  Ensuring simulations reflect real-world dynamics.

. Human behaviors

Validation
«  Comparing simulation results with real-world data.
On-policy validation
Industry settings

« Nuances coming from the production systems
- Maintainability
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